## Predefined functions for real and complex numbers in SMath Studio

by Gilberto E. Urroz, September 2009
Functions for real numbers - The following functions are available for application to real numbers:

- abs absolute value
- exp exponential function
- Gamma Gamma ( $\Gamma$ ) function
- $\ln$ natural logarithm, i.e., logarithm of base $e$
- log logarithm of any base
- $\log 10 \quad$ logarithm of base 10
- mod modulus
- nthroot the $n$-th root of a number
- numden decompose a fraction into numerator and denominator
- perc percentage
- round rounds to an integer
- sign extracts the sign
- sqrt square root
- random generates a random number

These functions are available, unclassified, by using the Insert $>$ Function menu and then selecting the All category of functions:


Some of these functions are also available in the Functions palette: The Function palette includes also trigonometric functions (sin, cos, tan, cot), calculus expressions (summation, product, derivative, integral), functions that apply to matrices (el), and functions that apply to graphs
 (the last three symbols in the last line).

Some of these functions are also available in the Arithmetic palette. These include the absolute value ( $a b s$ ), the square root ( $s q r t$ ), and the $n$-th root ( $n$ throot) functions. Also shown in the Arithmetic palette are the following items:

- Mathematical Constants: Positive infinity $(\infty), \operatorname{Pi}(\pi)$, Imaginary unit (i)
- Numerical Digits: 0-9

| Arithmetic |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\infty$ | $\pi$ | i |  | $\pm$ |  |  | $\leftarrow$ |
|  |  | 8 | 9 |  |  |  |  | \|- ${ }^{\text {\| }}$ |
|  |  | 5 | 6 |  |  |  |  | $1 / 1$ |
|  |  | 2 | 3 |  |  |  |  | $\rightarrow$ |
|  |  |  |  |  |  |  |  |  |

- Arithmetic operators: $\pm,+,-, \times, /$, power
- Evaluation operators: Definition (:=), Numerical Evaluation ( $=$ ), Symbolic Evaluation $(\rightarrow)$
- Postfix Operators: Factorial (!)
- Editing Characters: Decimal point (.), Comma (,), Backspace ( $\leftarrow$ )

Since trigonometric and hyperbolic functions apply also to real numbers, we provide a list of those functions available under the Function - Insert form (see above) under the headings Trigonometric and Hyperbolic:

Trigonometric:

- $\sin$
- $\cos$
- tan
- cot
- sec
- csc

Hyperbolic:

- $\sinh$
- cosh
hyperbolic sine
hyperbolic cosine
hyperbolic tangent
- coth hyperbolic cotangent
sine
cosine
tangent
cotangent
secant
cosecant
- sech
- 
- tanh
hyperbolic secant
- asin
- acos
- atan
- acot
- arcsec
- arccosec
inverse sine inverse cosine inverse tangent inverse cotanget inverse secant inverse cosecant
- csch
- asinh
- acosh
- atanh
- acoth
hyperbolic cosecant inverse hyperbolic sine inverse hyperbolic cosine inverse hyperbolic tangent inverse hyperbolic cotanget


## Examples of functions applied to real numbers

These functions can be inserted from the Functions - Insert form (Insert $>$ Function menu), the Functions palette, or simply by typing the name of the function into a region of the SMath Studio worksheet. The following are examples of real-number functions in SMath Studio:



The mod function applies to integers only, and it's described in the following example:

```
//Function "mod" calculates the integer residual (r) of the ratio of two integers m,n,
//where m>n and q is the integer quotient, i.e.: m/n = q + r/m. Thus, if m is a multiple
//of n, r = 0, and mod (m,n) = 0. Otherwise, mod (m,n) = r < n. See the following examples:
mod}(5,1)=0\quad\operatorname{mod}(5,2)=1\quad\operatorname{mod}(5,3)=2\quad\operatorname{mod}(5,4)=1\quad\operatorname{mod}(5,5)=
// Thus, function "mod" can be used to determine if an integer m is a multiple of
// another integer n, for if that is the case then " mod(m,n) = 0".
    //nthroot: type "nthroot (81,3)=":
```

Function numdem, shown below, separates a fraction into a numerator and a denominator:

```
//numden: type "numdem(27.4)=": }\quad\mathrm{ numden (27.4)=( 27.4
```

$$
\text { numden }\left(\frac{1+\sqrt{2}}{\sqrt{3}+\sin \left(\frac{\pi}{6}\right)}\right)=\binom{2.7182 \cdot 10^{15}}{1.9604 \cdot 10^{15}} \quad \text { numden }\left(\frac{1+\sqrt{2}}{\sqrt{3}+\sin \left(\frac{\pi}{6}\right)}\right) \rightarrow\binom{1+\sqrt{2}}{\sqrt{3}+\sin \left(\frac{\pi}{6}\right)}
$$

Notice that, in its numerical evaluation, the last example shows both numerator and denominator multiplied by 1015. These two factors obviously cancel when the fraction is put together again, but it serves to emphasize that SMath Studio calculates values with 15 decimals.

More functions for real numbers are shown next:


```
//round: "round (x,n)" rounds up a floating-point value x to n decimal figures:
```



Function rand is used to produce random numbers, as indicated below:

```
// Function "rand(x)" produces a random number uniformly distributed between 0 and x.
// The argument "x" must be a positive number. Other examples:
    random(10)=2 random(100)=9 random(200)=54 random(1000)=951
// Function "random" returns integer numbers. If we were to need a random number
// between 0 and 1, with n decimal figures, use: random(10^n)/10^n, e.g.,
    \frac{random(1\mp@subsup{0}{}{2})}{1\mp@subsup{0}{}{2}}=0.8\quad\frac{random(1\mp@subsup{0}{}{3})}{1\mp@subsup{0}{}{3}}=0.321\quad\frac{random(1\mp@subsup{0}{}{4})}{1\mp@subsup{0}{}{4}}=0.9049
// To generate a uniformly-distributed random number in the interval [a,b],
// with a<b, use: a + (b-a)*random(10^n)/10^n, where n = 2, 3, 4, ..., e.g.:
    20+(80-20)\cdot\frac{random(103)}{1\mp@subsup{0}{}{3}}=53.6
// You can write your own function "myrandom" to calculate random numbers:
\[
\text { myrandom }(a, b, n):=a+\left((b-a) \cdot \frac{\operatorname{random}\left(10^{n}\right)}{10^{n}}\right)
\]
\[
/ / \text { Examples: myrandom }(50,100,5)=76.378 \quad \text { myrandom }(50,100,5)=78.82
\]
\[
\text { myrandom }(50,100,5)=84.0755 \quad \text { myrandom }(50,100,5)=69.4585
\]
The following example shows how to produce a row vector of random values in the range [50,100] using \(n=5\) :
```

```
for k }k=1..1
```

for k }k=1..1
x 1 k}:=\mathrm{ myrandom (50, 100, 5)
x 1 k}:=\mathrm{ myrandom (50, 100, 5)
1) Press "for" in the "Programming" palette
2) Type k in the first place holder in "for"
3) Type "range(1,10)" in the second place holder in "for"
4) Type "x[1,k <space bar> :" below the "for" line
5) Click outside of the region, and type "x="
x=(65.848 68.176 90.855 77.108 94.498 81.336 81.732 88.2085 90.936 66.7025)

```

\section*{Functions exclusive for complex numbers}

The Function - Insert form provides the following functions that apply exclusively to complex numbers (let \(\mathrm{z}=x+i y\) represent a complex number):
- arg angle in complex plane, \(\arg (z)=\operatorname{atan}(y / x)\)
- Im imaginary part, \(\operatorname{Im}(z)=y\)
- pol2xy convert polar coordinates to rectangular coordinates
- \(\operatorname{Re}\) real part, \(\operatorname{Re}(z)=x\)
- xy2pol convert rectangular coordinates to polar coordinates

The following examples show applications of these functions to complex numbers:


The function abs, when applied to a complex number, produces the modulo (length) of the complex number. Function abs is not included in the listing of Complex Numbers functions in the Insert Function form. However, \(a b s\), and many other functions that we applied to real numbers above, can be applied to complex numbers as illustrated next:


\section*{Rectangular and polar representation of complex numbers}

A complex number written in the form \(z=x+i y\) is in its rectangular (or Cartesian) representation. Thus, it can be written also as the ordered pair ( \(x, y\) ), and be represented in an Argand diagram in which the abscissa is \(x\) and the ordinate is \(i y\). An alternative way to represent point \((x, y)\) is through its polar representation whose coordinates are \((r, \theta)\). The proper way to write the polar representation of a complex number is through the
 use of Euler's formula: \(\quad e^{i \theta}=\cos (\theta)+i \sin (\theta)\). With this result,
\[
z=x+i y=r \cos (\theta)+i r \sin (\theta)=r(\cos (\theta)+i \sin (\theta))=r e^{i \theta} .
\]

SMath Studio provides functions \(x y 2 p o l\) to convert from rectangular \((x, y)\) into polar \((r, \theta)\) coordinates, and pol2xy to convert from polar \((r, \theta)\) to rectangular \((x, y)\) coordinates. Thus, with these functions one can go easily go from rectangular to polar representations of a complex number, and vice versa.

In the following example we convert from rectangular to polar representations of a complex number:


The following example shows a conversion from polar to rectangular representations of a complex number:


\section*{Operations with complex numbers}

The following examples show operations with complex numbers in SMath Studio:
\begin{tabular}{|l|l|}
\hline //Operations with complex numbers: \\
\hline z1:=3.2-1.5•i & \(z 2:=-5.2+2.2 \cdot i\) \\
\hline\(/ /\) addition: & \(z 1+z 2=-2+0.7 \cdot i\) \\
\hline\(/ /\) subtraction: & \(z 1-z 2=8.4-3.7 \cdot i\) \\
\hline\(/ /\) multiplication: & \(z 1 \cdot z 2=-13.34+14.84 \cdot i\) \\
\hline\(/ /\) division: & \(\frac{z 1}{\mathrm{~L} 2}=-0.6255+0.0238 \cdot i\) \\
\hline\(/ /\) conjugate: & \(z 1 c:=\operatorname{Re}(z 1)-i \cdot \operatorname{Im}(z 1)\) \\
\hline & \(z 1 c=3.2+1.5 \cdot i\) \\
\hline
\end{tabular}

The complex conjugate of a complex number is the reflection of number \(z=x+i y\) about the \(x\) axis, i.e., \(\quad \bar{z}=x-i y\). This is illustrated in the figure to the right:

\section*{//Powers of}
//the imaginary
//unit:
\(\left(\begin{array}{ll}i^{2} \\ i^{2} \\ i^{2} \\ i^{5}\end{array}\right)=\left(\begin{array}{c}-1 \\ -i \\ 1 \\ i\end{array}\right)\)


All other operations follow the rules of algebra with the caveat that \(i^{2}=-1\), etc. Other powers of the unit imaginary number are shown in the vector to the left.

Using the conjugate we can write: \(z \cdot \bar{z}=r^{2}\). This calculation is illustrated below:


\section*{The Gamma function}

Most readers with courses in Algebra and Calculus I will be already familiar with most of the functions for real and complex numbers presented in this document. The Gamma function may be an exception, since it is an advanced mathematical function and probably would not have been introduced in those courses. The Gamma function is defined by an integral, namely,
\[
\Gamma(x)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
\]

The Gamma function is related to the factorial operator as follows: \(\quad \Gamma(x+1)=x!\), if \(x\) is an integer.
The following examples use the Gamma function in some calculations:
\[
\begin{aligned}
& \operatorname{Gamma}(5)=24 \quad 4!=24 \\
& \operatorname{Gamma}(5.6)=61.554 \\
& \operatorname{Gamma}(3+3 \cdot i)=-0.4401-0.0636 \cdot i
\end{aligned}
\]

Note: the Gamma function currently defined in SMath Studio 0.85 cannot handle negative arguments, or complex arguments whose real part is negative. For many applications this definition will be fine, but the full definition of the Gamma function should be able to handle negative arguments. Based on the paper "A note on the computation of the convergent Lanczos complex Gamma approximation" by Paul Godfrey (2001), found in http://home.att.net/~numericana/answer/info/godfrey.htm\#lanczoscoeffs , I redefined the Gamma function to include negative arguments, as follows:

The figure to the right also shows some calculations of the modified Gamma function, and a graph of the function.
\[
\begin{aligned}
\operatorname{myg}(x):= & \text { if } x \geq 0 \\
& \text { Gamma }(x) \\
& \text { else } \\
& \frac{\pi \cdot(|x|+1)}{\text { Gamma }(|x|+2) \cdot \sin (\pi \cdot(|x|+1))}
\end{aligned}
\]

Compare the graph with that shown in the one shown in the wikipedia entry:
http://en.wikipedia.org/wiki/Gamma function
```

