
The 4th -order Runge-Kutta method for a system of ODEs
------------------------------------------------------
By Gilberto E. Urroz, Ph.D., P.E.
January 2010

Problem description
-------------------

Consider the case of a system of two first-order ODEs given by:

f1 , yxf1 ,
2y
1y

x
dx
1dy

f2 , yxf2 ,
2y
1y

x
dx
2dy

subject to the initial conditions:

1y1ys
1xs and

2y2ys
2xs

This system of equations can be re-written as a single ODE in
which y and f are column vectors, i.e.,

2y
1y

yf , yx
dx
dy

f2 , yx

f1 , yx
f , yx, with and

ys2
ys1

ysThe initial conditions are given by the vector:

Once the system of equations is written as a single ODE, the
Runge-Kutta algorithms presented for a single ODE can be used
to solve the equation. This illustrated in the following
example.

Example
-------

Solve the system of first-order ODEs:

sin 2ycos 1ysin x
dx
1dy

sin 2ycos x
dx
2dy

Subject to the initial conditions:

1y1 0 and 1y2 0

Solve the ODEs in the interval: 0 ≤ x ≤ 20 using 100 intervals.

-1-



Solution (version 1):
---------------------

First, define the vector function f(x,y):

sin 2ycos x

sin 2ycos 1ysin x
f , yx

1
1

ysThe initial conditions are: 0xs

The end of the solution interval is: 20xe

Use 100 intervals: 100n

Calculate the increment size, Δx:

eval
n
xsxe

Δx 0.2Δx

Create the x solution vector: eval , ..Δxxs xexsxsol

The y-solution vector gets initialized as follows:

ysysol
1
1

ysol

The following "for" loop calculates the Runge-Kutta algorithm
(version 1) to produce the solution:

for

augment , y1ysolysol

eval K4K32K22K1
6
1

y0y1

eval f , y1x1ΔxK4

eval 1kxsolx1

eval K3y0y1

eval f , yMxMΔxK3

eval K2
2
1

y0yM

eval f , yMxMΔxK2

eval K1
2
1

y0yM

eval f , y0x0ΔxK1

eval Δx
2
1

x0xM

eval col , kysoly0

eval kxsolx0
..n1k

After completing the iterative process, the solution is
stored in a row vector called "ysol". This vector can be
transposed to put together the graph of the two solutions
as illustrated here:

T
ysolysol

-2-



augment , col , 1ysolxsolM1

augment , col , 2ysolxsolM2

M2
M1
0 4 8 12 16 20

4

3

2

1

0

-1

x

y

M2
M1
0 4 8 12 16 20

4

3

2

1

0

-1

x

y

The plot to the left uses the "Graph by lines" option in the "Plot"
palette, while the plot to the right uses the "Graph by points"
option in the "Plot" palette.

Solution (version 2):
---------------------

First, define the vector function f(x,y):

sin 2ycos x

sin 2ycos 1ysin x
f , yx

1
1

ysThe initial conditions are: 0xs

The end of the solution interval is: 20xe

Use 100 intervals: 100n

Calculate the increment size, Δx:

eval
n
xsxe

Δx 0.2Δx

Create the x solution vector: eval , ..Δxxs xexsxsol

The y-solution vector gets initialized as follows:

ysysol
1
1

ysol

The following "for" loop calculates the Runge-Kutta algorithm
(version 1) to produce the solution:

-3-



for

augment , y1ysolysol

eval K4K33K23K1
8
1

y0y1

eval f , y1x1ΔxK4

eval 1kxsolx1

eval K3K2K1y0y1

eval f , y23x23ΔxK3

eval K2
3
1

y13y23

eval f , y13x13ΔxK2

eval K1
3
1

y0y13

eval f , y0x0ΔxK1

eval Δx
3
2

x0x23

eval Δx
3
1

x0x13

eval col , kysoly0

eval kxsolx0
..n1k

After completing the iterative process, the solution is
stored in a row vector called "ysol". This vector can be
transposed to put together the graph of the two solutions
as illustrated here:

T
ysolysol

augment , col , 1ysolxsolN1

augment , col , 2ysolxsolN2

N2
N1
0 4 8 12 16 20

4

3

2

1

0 x

y

N2
N1
0 4 8 12 16 20

4

3

2

1

0 x

y

The plot to the left uses the "Graph by lines" option in the "Plot"
palette, while the plot to the right uses the "Graph by points"
option in the "Plot" palette.

-4-


