Greg Locock

30 Jan 2010

Based on Bureau of Aeronautics Report 192 Diehl, except
as noted. (numbers) are equations from that paper. Single number results are in turquoise, inputs in green. No claims this is accurate, just interesting.

US customary units throughout except as noted.
Engine BHP= 180

$$
\mathrm{W}:=2400
$$

```
                                    MTOW lb
```

Wfuel:= 362
PropRPM: $=2700$
$\mathrm{V}:=130$
L over D max: $=10$
$S:=160$
CLmax:= 1.33
$C R:=8.5 \quad$ Compression ratio of engine

$\frac{\text { Engine } \mathrm{BHP}}{\mathrm{V}}=1.38$

$\frac{\text { Engine } \mathrm{BHP}}{\mathrm{S}}=1.12$
$\frac{\mathrm{W}}{\mathrm{S}}=15$
sfc:=(.75-.04.CR)•1.25
BoA TR234 (11) sfc of engine, corrected for modern fuel?
$D:=\left(\left(\frac{90000}{\text { PropRPM }}\right)^{2} \cdot \frac{\text { Engine BHP }}{V}\right)^{.}$
.25
D. $12=75.15$
(1) prop diameter in inches
n2max $:=.94-\frac{.11}{\left(\frac{\mathrm{~V}}{\frac{60}{\text { PropRPM• } \cdot 3 \cdot 1760}}\right)}$
(3) max efficiency of a 2 bladed prop of that diameter

$\eta 2 \max =0.78$

Vs: $=19 \cdot 8 \cdot \sqrt{\frac{W}{C L m a x \cdot S}}$
(6) Stalling speed mph at sea level
$\mathrm{Vs}=66.49$
$V \max :=\frac{20 \cdot 3 \cdot n 2 \max ^{\frac{1}{3}} \cdot V s}{\left(\left(\frac{V s \cdot W}{\text { Engine BHP }}\right)^{\frac{1}{3}}\right)}$
(5) max speed at sea level mph
$\operatorname{Vmax}=129.2$
$C:=33000 \cdot\left(\frac{n 2 \max \cdot\left(\frac{V m a x}{V s}\right)^{-.27}}{\left(\frac{W}{\text { Engine BHP }}\right)}-\left(\frac{2 \cdot V s+V m a x}{1125 \cdot \mathrm{~L} \text { over D max }}\right)\right)$

The following bit is not in the paper, this is an alternative method to find the density of the air at maximum altitude, and then working out the altitude at which that density occurs. Engine power is proportional to density

$\rho 0:=1.225 \quad \mathrm{~kg} \mathrm{~m}-3$

pmin: $=\left(\frac{2 \cdot\left(W \cdot \frac{9.81}{2.2}\right)^{3} \cdot \rho 0^{2}}{\left((\text { Engine BHP } 747)^{2} \cdot \eta 2 \text { max }^{2} \cdot L \text { over } D \text { max }^{2} \cdot \text { CLmax } \cdot\left(S \cdot .305^{2}\right)\right)}\right)^{\frac{1}{3}}$
pmin $=0.55 \quad \mathrm{~kg} \mathrm{~m}-3$

$\mathrm{Za}=2.47 \cdot 10^{4}$
$\mathrm{Zs}:=\mathrm{Za} \cdot\left(\frac{\mathrm{C}-100}{\mathrm{C}}\right)$
$Z s=2.18 \cdot 10^{4}$
T2A(z):= if $z \geq Z a$

$$
1000
$$

else

$$
\frac{-\mathrm{Za}}{\mathrm{C}} \cdot \ln \left(\frac{\mathrm{Za}-\mathrm{z}}{\mathrm{Za}}\right)
$$

T2A $(2000)=2.49$
for $k:=1, k<22, k:=k+1$
Time2Alt k i: k
Time2Alt $_{\mathrm{k} 2}:=\mathrm{T} 2 \mathrm{~A}\left(\right.$ Time2Alt $\left._{\mathrm{k} 1} \cdot 1000\right)$

Time2Alt

Plot of time in minutes to reach a given altitude in thousands of feet
$\left.\operatorname{Vn}(\mathrm{z}):=\operatorname{ainterp}\left(\begin{array}{c}0 \\ .25 \\ .5 \\ .75 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ .98 \\ .95 \\ .88 \\ .65\end{array}\right), \frac{\mathrm{z}}{\mathrm{Za}}\right)$
for $k:=1, k<22, k:=k+1$
$\left\lvert\, \begin{aligned} & \text { VAlt } \mathrm{k}_{1}:=\mathrm{k} \\ & \text { VAlt } \mathrm{k} 2:=\operatorname{Vn}\left(\text { VAlt }_{\mathrm{k} ~} 1 \cdot 1000\right) \cdot \text { Vmax }\end{aligned}\right.$

VAlt

Max speed in mph vs altitude in thousands of feet
$R:=862 \cdot\left(\frac{\eta 2 \mathrm{max}}{\mathrm{sfc}}\right) \cdot$ L over D maxilog $10\left(\frac{W}{W-W f u e l}\right)$
(12) Breguet range in miles

