CEE3030 - Test 02 - Fall 2009 - Solutions:

[1]. Binomial. The probability of a forest fire on a given summer day at a state park is estimated to be 0.2. What would be the probability of having exactly 3 fires in a 10-day period that summer?

Solution: $X=$ number of forest fires, $X \sim \operatorname{Bin}(n=10, p=0.2)$.
We want: $P(X=3)=$?
For the binomial distribution the pmf is:

$$
P(X=x)=f(x)=\frac{n!}{x!\cdot(n-x)!} \cdot p^{x} \cdot(1-p)^{n-x} \text {, for } x=0,1, \ldots, n
$$

Thus, $P(X=3)=f(3)=\frac{10!}{(3!) \cdot(7!)} \cdot 0.2^{3} \cdot 0.8^{7}=0.2013$
[2]. Poisson. A service engineer at a UDOT service station takes care of servicing 3 cars per day, on the average. What is the probability that, on a given day, he'll have to take care of servicing 4 or more vehicles?

Solution: X = number of vehicles serviced on a day, then $X \sim \operatorname{Poisson}(\lambda=3)$. We want:

$$
P(X \geq 4)=1-P(X \leq 3)=1-F(3)=1-\sum_{x=0}^{3} f(x)
$$

For the Poisson distribution the pmf is:

$$
P(X=x)=f(x)=\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}, \text { for } x=0,1, \ldots, \infty
$$

Thus, we want:

$$
P(X \geq 4)=1-\sum_{x=0}^{3}\left(\frac{e^{-3} \cdot 3^{x}}{x!}\right)=0.3528
$$

[3]. Negative Binomial. Suppose you are testing a well field for a certain contaminant. The probability that a given well is contaminated is estimated to be 0.1. A clean-up of the field will be required if you find 3 contaminated wells. What is the probability that you will find 3 contaminated wells after testing only 5 wells?

Solution: X = number of wells tested before finding 3 contaminated wells. $X \sim N B(r=3, p=0.1)$, and we want to find $P(X=5)=$?

For the negative binomial distribution, the pmf is:

$$
P(X=x)=f(x)=\binom{x-1}{r-1} \times p^{r} \cdot(1-p)^{x-r}, \text { for } x=r, r+1, \ldots, \infty
$$

Thus,
$P(X=5)=f(5)=\binom{4}{2} \times 0.1^{3} \cdot 0.9^{2}=\frac{4!}{2!\cdot 2!} \cdot 0.1^{3} \cdot 0.9^{2}=0.0049$
[4]. Geometric. The probability that a manufacturing machine requires repairs on a given day is 0.05 . What is the probability that the first time that the machine require repairs occurs in the 5-th day of operation?

Solution: $X=$ number of days for machine repairs, $X \sim$ geom($p=0.05$). Thus, we need to find $P(X=5)=f(5)=$?

For the geometric distribution, the pmf is:
$P(X=x)=f(x)=p \cdot(1-p)^{x-1}, \quad x=1,2, \ldots, \infty$
The solution is: $P(X=5)=f(5)=0.05 \cdot 0.95^{4}=0.0407$
[5]. Hypergeometric. Youreceive a sample of 20 net book computers to provide to your engineering field crew. After you receive the shipment of computers, and send a crew of 10 people with computers into the field, the manufacturer calls you and tells you that 6 of the computers have a defective WiFi unit. What is the probability that exactly 2 of the computers in the field have a defective WiFi unit?

Solution: X = number of defective computers out of 10 sent to the field, knowing that in a population of 20 computers, 6 are defective. $X \sim H(N=20, R=6, n=10)$. Find $P(X=2)=$?

For the hypergeometric distribution the pmf is:

$$
P(X=x)=f(x)=\frac{\binom{R}{x} \cdot\binom{N-R}{n-x}}{\binom{N}{n}}=
$$

Then,

$$
P(X=2)=f(2)=\frac{\binom{6}{2} \cdot\binom{14}{8}}{\binom{20}{10}}=\frac{\frac{6!}{2!\cdot 4!} \cdot \frac{14!}{8!\cdot 6!}}{\frac{20!}{10!\cdot 10!}}=0.2438
$$

[6]. The tensile strength of nylon strings used for a test in the lab follows the normal distribution with a mean of $200 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$ and a standard deviation of $10 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$. What percentage of nylon strings would have a tensile strength between 190 and $210 \mathrm{~N} / \mathrm{mm}$ ^2?

Solution: $X=$ tensile strength of nylon strings in $N / m^{\wedge} 2$, $\mathrm{X} \sim \mathrm{N}(\mu=200, \sigma=10)$. We want:

$$
P(190<X<210)=P\left(\frac{190-200}{10}<\frac{X-\mu}{\sigma}<\frac{210-200}{10}\right)=P(-1<Z<1)=\Phi(1)-\Phi(-1),
$$

where $\Phi(z)$ is the $C D F$ of the standard normal variable $Z=\frac{X-\mu}{\sigma}$.
Values of $\Phi(z)$ can be found in tables:

$$
\Phi(1)=0.8413 \text { and } \Phi(-1)=0.1587
$$

Thus, $P(190<X<210)=0.8413-0.1587=0.6826$
[7]. The hydraulic conductivity (m/s) of soil samples from a given aquifer is found to follow the lognormal distribution with parameters $\mu=0.2$ and $\sigma=0.05$. What is the mean value of the permeability of the aquifer?

Solution. X = hydraulic conductivity (m/s) of soil samples, $\mathrm{X} \sim \log$ ormal ($\mu=0.2, \sigma=0.05$). The mean value of X is:

$$
\mu_{X}=\exp \left(\mu+\frac{\sigma^{2}}{2}\right)=\exp \left(0.2+\frac{0.05^{2}}{2}\right)=1.2229 \mathrm{~m} / \mathrm{s}
$$

[8]. The time to failure, in days, of a field soil moisture probe follows the exponential distribution. The mean failure time is reported to be 3 days. What is the probability that a given soil moisture probe will last less than 2 days?

Solution: X = time to failure (days) of a probe, X $\sim \exp (\lambda)$
with: $\mu_{X}=\frac{1}{\lambda}$. Since $\mu_{X}=3$, then $\lambda=\frac{1}{\mu_{X}}=\frac{1}{3}$.

We are seeking $P(X<2)=F(2)$. For the exponential distribution

$$
\begin{aligned}
& P(X<x)=F(x)=1-e^{-\lambda \cdot x}, x>0 . \text { Thus, } \\
& P(X<2)=F(2)=1-e^{-\left(\frac{1}{3}\right) \cdot 2}=1-e^{-\frac{2}{3}}=0.4866
\end{aligned}
$$

[9]. The maximum daily discharge in a small stream, in cubic feet per second (cfs), follows the Weibull distribution with parameters $\alpha=2$ and $\beta=3$. Determine the probability that, on a given day, the maximum daily discharge will be between 0.5 and 5.5 cfs.

Solution: $X=$ max. daily discharge (cfs) in a small stream, $X \sim$ Weibull $(\alpha=2, \beta=3)$. We seek $P(0.5<X<5.5)=$?

For the Weibull distribution, $F(x)=1-e^{-(\beta x)^{\alpha}}$, for $x>0$, thus:
$P(0.5<X<5.5)=F(5.5)-F(0.5)=\left(1-e^{-(3.5 .5)^{2}}\right)-\left(1-e^{-(3 \cdot 0.5)^{2}}\right)$
$P(1.5<X<2.5)=e^{-1.5^{2}}-e^{-16.5^{2}}=0.1054$
[10]. A cylindrical Uranium rod emits particles radially so that the angle of emission is uniformly distributed in the range $a=-\Pi$ and $b=+\pi$. If a Geiger counter is located in front of the cylinder and it detects particles emitted in the range $-\Pi / 4$ to $+\Pi / 4$ only, what is the probability that a given particle emitted from the rod will be detected by the Geiger counter?

Solution: X = angle along which radioactive particles are emitted from a rod, $X \sim$ uniform $(a=-\Pi, b=+\pi)$, we want to find P $(-\Pi / 4<Х<$ П $/ 4)=$?

For the uniform distribution, the CDF is given by:

$$
F(x)=\frac{x-a}{b-a}=\frac{x-(-\pi)}{\pi-(-\pi)}=\frac{x+\pi}{2 \cdot \Pi}
$$

Therefore,

$$
P(-\Pi / 4<X<\Pi / 4)=F\left(\frac{\Pi}{4}\right)-F\left(-\frac{\Pi}{4}\right)=\frac{\frac{\pi}{4}+\Pi}{2 \cdot \Pi}-\frac{-\frac{\pi}{4}+\Pi}{2 \cdot \Pi}=0.25
$$

