What kind of problem can this example be used to solve?
Suppose you want to plot an equation that has 2 variables (they might be called x and y) and, if the equation is described as LeftSide = RightSide, neither LeftSide nor RightSide is 0 .

For example, $\sin (2 * x) * \cos (y)=0.4$

Then write this equation with either LeftSide or RightSide subtracted from both sides
so that the equation looks like LeftSide-RightSide=0 (or RightSide-LeftSide=0)
In the above example, you could subtract 0.4 to get: $\sin (2 * x) * \cos (y)-0.4=0$
Then define a function which equals (in this example) LeftSide-RightSide. When
this function $=0$, your original equation is true.
The equation needs to be written "= 0" because the implicit-functiongrapher is designed to plot the points where some expression (the function given by you) $=0$.

If there was originally a function $z=F u n c t(x, y)$, such as $z=s i n(2 * x) * \cos (y)$ in the above example, then graphing Funct $(x, y)=K$, which is Funct $(x, y)-K=0$, where K is a constant, makes part of a contour plot of Funct.

This example is based on http://twt.mpei.ac.ru/ochkov/Lace/Lace_eng.hfm
Definitions:
The function to be plotted:

$$
f(x, y):=\sin (2 \cdot x) \cdot \cos (y)-0.4
$$

Specify what region of the input variables you want to plot (generically, we'll call these variables x and y):

$$
x \min :=-3 \quad \text { xmax }:=3 \quad y m i n:=-3 \quad y m a x:=3
$$

Specify the fineness of display resolution of the plot:

```
xstep:=0.02 ystep:=0.02
```

How big is the graphing problem?
Based on the above constants, let's find out how many points will be potentially graphed:

$$
\text { xsize:= } \frac{(x \max -x \min)}{\text { xstep }}+1 \quad \text { xsize= } 301 \quad \text { ysize:= } \frac{(y \max -y m i n)}{y s t e p}+1 \quad \text { ysize= } 301
$$

xsize•ysize= 90601
Total number of points potentially graphed
(Scroll down for the implicit-functiongraphing routine itself)

The implicit-functiongraphing routine:
It works by computing the value of the function at and near each one of the xsize*ysize points, scanning across the specified region (of the input variables) in grid fashion.

The value ("Pvalue") at each point P is multipliedby the value ("Qvalue") at a point Q that is close to point P (distance "xstep" away from P).

- If P or Q is a root of the equation, then Pvalue or Qvalue is 0, so Pvalue * Qvalue = 0 .
- If a root is between P and Q, then, typically, one of Pvalue or Qvalue is positive and the other is negative, so Pvalue * Qvalue < 0. This requires that:
(a) xstep is small enough so that no other roots are between P and Q, and
(b) there does not happen to be a root between P and Q that is also a local maximum or minimum [example: if $f(x)=x^{\wedge} 2$ and P is at $x=-1$ and Q is at $x=+1$, then Pvalue and Qvalue are both positive, even though there is a root $x=0$ between P and Q].

So if Pvalue * Qvalue $<=0$, the coordinates (x, y) of P are added (concatenated) to a list of points to plot.

The same procedure that has just been described for points P and Q is also done for points P and R, where R is close in the y-direction (by distance ystep) to point P. If only P and Q were considered, then nearly horizontal parts of the graph might not have as many points, which would make them harder to see.

The names P, Q, R are $u s e d$ only in this text, not in the graphing routine itself.
P is (x, y)
Q is (x-xstep, y)
R is (x, y-ystep)

Points:=(0) Initializethe list of points to plot; otherwise, when the first point is to be added, the software won't be able to detect the dimensions of the list and will indicate an error.
for $y \in y m i n, y m i n+y s t e p . . y m a x$
for $x \in x m i n$, xmin+xstep.. xmax
if $((f(x-x$ step, $y) \cdot f(x, y) \leq 0) V(f(x, y) \cdot f(x, y-y s t e p) \leq 0))$
Points:=stack(Points, (x y))
else
1
A dummy "else" clause is used because it was not evident how to specify an "if" with no "else."

Points:= submatrix (Points, 2 , rows (Points), 1 , 2)
Remove the first "point" that was added when the list of points was initialized. This will NOT erase the point $(0,0)$, if it happened to be found as a root of the equation or found to be near a root - any (0,0) that was found will still appear in the list.

(Scroll down for the results)

rows (Points) $=1188$
The number of points that were found to be roots, or to have roots near them.

Points

