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ACTA UNIVERSITATIS APULENSIS Special Issue

CUBIC SPLINE INTERPOLATION USING MATHCAD

Nicolae Dăneţ

Abstract. In this paper we develop and implement in Mathcad an algo-
rithm for the construction of the cubic spline functions with end slope bound-
ary conditions. By effectuating simple modification of this algorithm we can
obtain cubic spline functions that satisfy other boundary conditions. So we
can show what are the boundary conditions used by Mathcad functions lspline,
pspline and cspline.

2000 Mathematics Subject Classification: Primary 65D07. Secondary 68N30.

1. Introduction

Nowadays all computation are made using a computer and a modern soft-
ware. But in some situations the software programs are not so well documented
and the user does not know exactly in what conditions he can use a function,
because the functions are created according to the principle of a black box.
We know the name of the function, the inputs and the outputs, but we do not
know the internal mechanism. A black box is defined by ”what” it does and
not by ”how” it does it. We can successfully use functions like black boxes if
we know the numerical method implemented in each function, its performance
and its limitation, the cases for which it is recommended and the cases for
which it is prohibited. But this information is not always given to the end
user.

Let us consider the following example. It is well known that in order to
obtain a cubic spline function we have to determine 4n unknowns and we have
only 4n− 2 conditions (see Section 2 for details). To determine a unique cubic
spline function it is necessary to add two additional boundary conditions. In
literature, see for example [1, 2, 5, 6, 7], several conditions are known that lead
to obtaining diverse spline functions which differ among themselves only near
the endpoints (see Example 3.5).
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Nicolae Dăneţ - Cubic spline interpolation using Mathcad

Mathcad software has for interpolation three functions, lspline, pspline
and cspline, that are used together with interp function. In Mathcad Help
these functions have a short description, which contains no indications about
the boundary conditions used by every of them.

In this paper we develop and implement in Mathcad an algorithm for the
construction of the cubic spline functions with end slope boundary conditions.
By effectuating simple modification of this algorithm we can obtain cubic spline
functions that satisfy other boundary conditions. So we can show what are
the boundary conditions used by Mathcad functions lspline, pspline and
cspline. For this we construct spline functions in two ways: first, directly,
by using Mathcad functions lspline, pspline and cspline, and, second, by
using the proper algorithm implemented in Mathcad. Then we compare the
values of these functions in some points.

2. Cubic spline functions

In this section we recall some basic facts about the cubic spline functions
and give a unitary method of construction for these functions when they have
different boundary conditions. In the first part we describe an algorithm for
obtaining a cubic spline function with end slope boundary conditions, and then
we show how this algorithm can be modified in order to obtain cubic spline
functions that satisfy other boundary conditions.

Definition 1 Let [a, b] be an interval of the real axis and a = x0 < x1 < ⋅ ⋅ ⋅ <
xn = b a partition of it. A function S : [a, b] −→ R is called a cubic spline
function if it satisfies the following conditions:

1) S and its derivatives S ′and S ′′are continuous on the interval [a, b].
2) On each subinterval [xi, xi+1], i = 0, 1, . . . , n − 1, S(x) is a cubic poly-

nomial: S(x) = ai + bix + cix
2 + dix

3.

Let f : [a, b] −→ R be a function such that we know its values only in the
nodes xi, i = 0, 1, . . . , n. We denote these values by fi = f(xi), i = 0, 1, . . . , n.
Our goal is to look for a cubic spline function S satisfying the interpolation
conditions

S(xi) = fi, i = 0, 1, . . . , n. (1)

To determine a cubic spline interpolant it is necessary to determine 4n
unknowns (ai, bi, ci, di), i = 0, 1, . . . , n − 1. For this operation we have n + 1
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interpolation conditions (1) and 3(n− 1) continuousness conditions⎧⎨⎩
S(xi − 0) = S(xi + 0), i = 1, 2, . . . , n− 1,
S ′(xi − 0) = S ′(xi + 0), i = 1, 2, . . . , n− 1,
S ′′(xi − 0) = S ′′(xi + 0), i = 1, 2, . . . , n− 1.

(2)

Therefore we have 3(n − 1) + (n + 1) = 4n − 2 conditions for 4n unknowns.
There are two degrees of freedom left.

To obtain a unique spline function two boundary conditions must be added
to remove these two degrees of freedom.

Case 1. End slope boundary conditions

S ′(x0) = f ′(x0), S ′(xn) = f ′(xn). (3)

These endpoint derivative conditions assure the existence of an unique cubic
spline function.

Theorem 1 There is a unique cubic spline function S(x) that satisfies the
interpolation conditions

S(xi) = fi, i = 0, 1, . . . , n,

and the end slope boundary conditions

S ′(x0) = f ′(x0), S ′(xn) = f ′(xn).

Proof. We give a short proof of this theorem because the algorithm we
implemented in Mathcad used this method of construction for a cubic spline
function and the notation established here (see also [3] and [4]).

Let ℎi = xi+1 − xi, i = 0, 1, . . . , n − 1. Denote by mi = S ′′(xi), i =
0, 1, . . . , n, the values of the second derivatives of the unknown spline function
S(x) at the nodes. m0,m1 . . . ,mn are called the moments of S(x).

In the first step of the proof we show that the spline function S(x) is
characterized by its moments mi, and in the second step that the moments mi

can be calculated as solution of a system of linear equations.
Step 1. Since the second derivative S ′′(x) is a linear function on the interval

[xi, xi+1] and S ′′(xi) = mi, S
′′(xi+1) = mi+1, then this linear function has the

form

S ′′(x) = mi
xi+1 − x

ℎi

+ mi+1
x− xi

ℎi

. (4)
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By integration we have

S(x) = mi
(xi+1 − x)3

6ℎi

+ mi+1
(x− xi)

3

6ℎi

+ Ai
xi+1 − x

ℎi

+ Bi
x− xi

ℎi

,

for x ∈ [xi, xi+1]. Using the interpolation conditions (1) we obtain the values
for the constants of integration Ai and Bi:

Ai = fi −mi
ℎ2
i

6
, Bi = fi+1 −mi+1

ℎ2
i

6
.

Therefore we have the following representation of the cubic spline function
S(x) in terms of its moments mi:

S(x) = mi
(xi+1 − x)3

6ℎi

+ mi+1
(x− xi)

3

6ℎi

+ (5)

+

(
fi −mi

ℎ2
i

6

)
xi+1 − x

ℎi

+

(
fi+1 −mi+1

ℎ2
i

6

)
x− xi

ℎi

,

where x ∈ [xi, xi+1] and i = 0, 1, . . . , n − 1. The resulting function S(x) is
continuous on the interval [a, b] and satisfies the interpolation conditions (1).

Step 2. To determine the moments m0, . . . ,mn we use the condition that
the first derivative S ′(x) is continuous in the internal nodes x1, . . . , xn−1, that
is,

S ′(xi − 0) = S ′(xi + 0), i = 1, 2, . . . , n− 1. (6)

By using the expression of the derivative S ′(x) for x ∈ [xi, xi+1] and for x ∈
[xi−1, xi], the continuousness conditions (6) yield the equalities

mi
ℎi−1

2
+

fi − fi−1
ℎi−1

− mi −mi−1

6
ℎi−1 = −mi

ℎi

2
+

fi+1 − fi
ℎi

− mi+1 −mi

6
ℎi.

After the rearrangement of terms we obtain

ℎi−1

6
mi−1 +

ℎi−1 + ℎi

3
mi +

ℎi

6
mi+1 =

fi+1 − fi
ℎi

− fi − fi−1
ℎi−1

, (7)

for i = 0, 1, . . . , n− 1.
In order to simplify the form of these equations we introduce the following

notation

bi =
ℎi−1

ℎi−1 + ℎi

, ci =
ℎi

ℎi−1 + ℎi

, (8)

di =
6

ℎi−1 + ℎi

(
fi+1 − fi

ℎi

− fi − fi−1
ℎi−1

)
. (9)
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We observe that
bi > 0, ci > 0, and bi + ci = 1. (10)

Then the equations (7) are written in a uniform format

bimi−1 + 2mi + cimi+1 = di, i = 1, . . . , n− 1. (11)

These equations form a system of n − 1 equations with n + 1 unknowns
m0,m1, . . . ,mn. The two necessary equations to obtain a system of n + 1
equations with n + 1 unknowns are obtained from the end slope boundary
conditions (3).

The condition S ′(x0) = f ′(x0) gives the equation

2m0 + m1 = d0, (12)

where

d0 =
6

ℎ0

(
f1 − f0

ℎ0

− f ′0

)
. (13)

Analogously, the condition S ′(xn) = f ′(xn) gives the equation

mn−1 + 2mn = dn, (14)

with

dn =
6

ℎn−1

(
f ′n −

fn − fn−1
ℎn−1

)
. (15)

The equations (11), (12) and (14) lead to the following system of n + 1
linear equations with n + 1 unknowns m0,m1, . . . ,mn, where we put

c0 = 1, bn = 1 (16)

for the uniformity of the writing.⎧⎨⎩

2m0 + c0m1 = d0,
b1m0 + 2m1 + c1m2 = d1,

b2m1 + 2m2 + c2m3 = d2,
. . . . . . . . .

...
bn−1mn−2 + 2mn−1 + cn−1mn = dn−1

bnmn−1 + 2mn = dn.
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In matrix notation, this system has the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 c0 0 0 ⋅ ⋅ ⋅ 0
b1 2 c1 0 ⋅ ⋅ ⋅ 0
0 b2 2 c2 ⋅ ⋅ ⋅ 0
...

...
. . . . . . . . . 0

0 0 ⋅ ⋅ ⋅ bn−1 2 cn−1
0 0 ⋅ ⋅ ⋅ 0 bn 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m0

m1

m2
...

mn−1
mn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d0
d1
d2
...

dn−1
dn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

If we denote by A the (n + 1) × (n + 1) matrix of the system, with m =
(m0,m1, . . . ,mn)T the vector of the moments and with d = (d0, d1, . . . , dn)T

the vector of the right hand side, then the system (17) can be written

Am = d. (18)

Since c0 = 1, bn = 1, and bi + ci = 1, i = 1, . . . , n− 1, the matrix A is strictly
diagonally dominant, therefore is nonsingular ([2], p.404), and the system (18)
has a unique solution. (For a short proof that A is a nonsingular matrix see
[7], p.101.) Because the matrix A is tridiagonal this system can be solved
easily and rapidly using a LU decomposition method (Crout factorization for
tridiagonal linear systems, see [2], p.414). □

End slope boundary conditions lead to an accurate approximation since
they include more information about the function ([2], p.154). In order to use
these conditions, it is necessary to have either the values of the derivative at
the end points x0 and xn, or an accurate approximation of those values.

Mathcad does not have a specific function dedicated to the construction of
a cubic spline function that satisfies the end slope boundary conditions. But
we have the possibility to implement in Mathcad the algorithm developed in
the proof of Theorem 1 (see Example 3.1).

Case 2. Natural boundary conditions

S ′′(x0) = S ′′(xn) = 0. (19)

These conditions will generally give less accurate results that the end slope
boundary conditions near the ends of the interval [x0, xn] (unless the function
f happens to nearly satisfy f ′′(x0) = f ′′(xn) = 0). The cubic spline function
which satisfies the natural boundary conditions is called a natural spline.
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Theorem 2 There is a unique cubic spline function S(x) that satisfies the
interpolation conditions

S(xi) = fi, i = 0, 1, . . . , n,

and the natural boundary conditions

S ′′(x0) = S ′′(xn) = 0.

Proof. In this case we have m0 = S ′′(x0) = 0 and mn = S ′′(xn) = 0. The
n− 1 equations (11) are sufficient for the determination of the n− 1 moments
m1,m2, . . . ,mn−1. If we change the relations (16) with c0 = 0 and bn = 0,
and define d0 = 0 and dn = 0 in (13) and (15), respectively, then we can use
the system (17) for the determination of the moments m0,m1, . . . ,mn. The
matrix of this system is also strictly diagonally dominant. □

Natural splines are obtained in Mathcad using the functions lspline and
interp (see Example 3.2). With lspline we obtain the vector m, here denoted
by ml in order to know that it was obtained with lspline function. More
precisely, we have

ml:=lspline(x,f),

where x = (x0, . . . , xn)T is the vector of nodes and f = (f0, . . . , fn)T is the
vector of the values of function f at these nodes. The corresponding cubic
spline function, denoted here by SL(z), is obtained by using Mathcad function
interp.

SL(z):=interp(ml,x,f,z).

This function could be written in one line as follows

SL(z):=interp(lspline(x,f),x,f,z).

Case 3. Cubic spline functions with the boundary conditions

S ′′(x0) = S ′′(x1), S ′′(xn−1) = S ′′(xn). (20)

This assumption states that S ′′(x) is constant in the first and last intervals.
This implies that S(x) is quadratic in these intervals, [x0, x1] and [xn−1, xn].

Theorem 3 There is a unique cubic spline function S(x) that satisfies the
interpolation conditions

S(xi) = fi, i = 0, 1, . . . , n,
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and the boundary conditions

S ′′(x0) = S ′′(x1), S ′′(xn−1) = S ′′(xn).

Proof. In this case we have m0 = m1 and mn−1 = mn. By using these
conditions in the first and last equations (11) we obtain the folloowing linear
system⎡⎢⎢⎢⎢⎢⎣

b1 + 2 c1 0 0 ⋅ ⋅ ⋅ 0
0 b2 2 c2 ⋅ ⋅ ⋅ 0
...

...
. . . . . . . . . 0

0 0 ⋅ ⋅ ⋅ bn−2 2 cn−2
0 0 ⋅ ⋅ ⋅ 0 bn−1 2 + cn−1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
m1

m2
...

mn−2
mn−1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
d1
d2
...

dn−2
dn−1

⎤⎥⎥⎥⎥⎥⎦
which has a strongly diagonally dominant matrix. Hence the system has a
unique solution. □

If we change the relations (16) with c0 = −2 and bn = −2, and put d0 = 0
and dn = 0 in (13) and (15), respectively, then we can have the same system
(17) for the determination of the moments m0,m1, . . . ,mn (see Example 3.3).

This type of cubic spline function is obtained in Mathcad using the func-
tions pspline and interp (see Example 3.3). More precisely, we have

SP(z):=interp(pspline(x,f),x,f,z).

Case 4. Cubic spline with S ′′(x) values at endpoints as linear
extrapolations

In this case, the values of S ′′(x0) and S ′′(xn) are taken as linear extrapo-
lation of the S ′′(x) values of the two nearest nodes [6]. For i = 1 the relation
(4), that is, the expression of S ′′(x) on the interval [x1, x2] , becomes

S ′′(x) = m1
x2 − x

ℎ1

+ m2
x− x1

ℎ1

, x ∈ [x1, x2] .

The value of this function at the point x0 /∈ [x1, x2] is

S ′′(x0) = m1
x2 − x0

ℎ1

+ m2
x0 − x1

ℎ1

. (21)

By using the notation m0 = S ′′(x0), ℎ0 = x1 − x0, and ℎ1 = x2 − x1, the
relation (21) can be written in the form

m0 −m1

(
1 +

ℎ0

ℎ1

)
+ m2

ℎ0

ℎ1

= 0. (22)

622
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Similarly, by using the expression of S ′′(x) on the interval [xn−2, xn−1] and
taken the value of this function at xn /∈ [xn−2, xn−1], we obtain the following
relation between mn−2,mn−1,mn :

mn−2
ℎn−1

ℎn−2
−mn−1

(
1 +

ℎn−1

ℎn−2

)
+ mn = 0. (23)

Theorem 4 There is a unique cubic spline function S(x) that satisfies the
interpolation conditions

S(xi) = fi, i = 0, 1, . . . , n,

and the boundary conditions (22) and (23).

Proof. The equations (11) together with (22) and (23) forms a system of
n + 1 equations with n + 1 unknowns, m0,m1, . . . ,mn. In order to see that
this system has a unique solution we eliminate the unknown m0 between the
equation (22) and the first equation (11) and the unknown mm between the
equation (23) and the last equation (11). The obtained linear system with the
unknown m1,m2, . . . ,mn−1 has the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 +
ℎ0

ℎ1

1− ℎ0

ℎ1

0 0 ⋅ ⋅ ⋅ 0

b2 2 c2 0 ⋅ ⋅ ⋅ 0
0 b3 2 c3 ⋅ ⋅ ⋅ 0
...

...
. . . . . .

... 0
0 ⋅ ⋅ ⋅ 0 bn−2 2 cn−2

0 ⋅ ⋅ ⋅ 0 0 1− ℎn−1

ℎn−1
2 +

ℎn−1

ℎn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which is strongly diagonally dominant. Therefore the system has a unique
solution (m1,m2, . . . ,mn−1). The value of m0 is obtained from the equation
(22) and the value of mn from equation (23). □

We can use the same system (17) to compute the solution (m0,m1, . . . ,mn)
if we delete the relations (16), put in the first row the coefficients of equation
(22) and in the last row the coefficirnts of equation (23), and put d0 = 0 and
dn = 0 in (13) and (15), respectively. Then the matrix of the linear system 17
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with these changes made is (see Example 3.4):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1− ℎ0

ℎ1

ℎ0

ℎ1

0 ⋅ ⋅ ⋅ 0

b1 2 c1 0 ⋅ ⋅ ⋅ 0
0 b2 2 c2 ⋅ ⋅ ⋅ 0
...

...
. . . . . . . . .

0 0 ⋅ ⋅ ⋅ bn−1 2 cn−1

0 0 ⋅ ⋅ ⋅ ℎn−1

ℎn−2
−1− ℎn−1

ℎn−2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This type of cubic spline function is obtained in Mathcad using the func-
tions cspline and interp (see Example 3.4). More precisely, we have

SC(z):=interp(cspline(x,f),x,f,z).

3. Cubic spline interpolation using Mathcad

In this section we give some examples of cubic spline interpolation using
Mathcad. In Example 3.1 we construct a cubic spline function with end slope
boundary conditions using the algorithm described in Theorem 1. Examples
3.2, 3.3 and 3.4 show how cubic spline functions which satisfy the boundary
conditions described in Cases 2, 3 and 4 of Section 2 can be obtained either with
Mathcad functions or by a short modification of the algorithm of Example 3.1.
In Example 3.5 we show the importance of a good knowledge of the boundary
conditions for spline interpolation near the end nodes.

In all these examples we use the following conventions: 1) The math regions
of Mathcad are written with italic font. 2) The text regions of Mathcad are
written we the usual font of all the text of the paper. 3) The graph regions are
introduced like images. 4) The vector results are shown in transposed position.
5) All computation are made with fifteen digits, but shown in a shorter form.

Example 3.1
In this example we construct a cubic spline function with end slope bound-

ary conditions using the algorithm described in the proof of Theorem 1. We
recall that Mathcad does not have a special function for this type of cubic
spline interpolation.

The input data:
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x - the vector of the nodes;
f - the vector of the values of the function at nodes;
v - a vector which contains some points from the interval of interpolation.

x :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00
1.75
3.00
4.10
5.00
5.60
7.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
f :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.25
2.95
3.40
5.60
4.25
6.10
4.75

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
v :=

⎡⎢⎢⎣
1.50
3.25
4.70
6.55

⎤⎥⎥⎦

The length of vector x: n := last(x) n = 6

The end slope boundary conditions: df0 := −3 dfn := −1

The differences between nodes: i := 0..n− 1 ℎi := xi+1 − xi

ℎT = (0.75 1.25 1.10 0.90 0.60 1.40)

The coefficients given by the formulas (8):

j := 1..n− 1 bj :=
ℎj−1

ℎj−1 + ℎj

cj :=
ℎj

ℎj−1 + ℎj

The coefficients below are introduced for the uniformity of the writing of the
system (17). This line must be modified if we use other boundary conditions.

c0 := 1 bn := 1

The construction of matrix A:

a0,0 := 2 a0,1 := c0

j := 1..n− 1 aj,j−1 := bj aj,j := 2 aj,j+1 := cj

an,n−1 := bn an,n := 2

A := a
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0 0
0.375 2 0.625 0 0 0 0

0 0.532 2 0.468 0 0 0
0 0 0.55 2 0.45 0 0
0 0 0 0.6 2 0.4 0
0 0 0 0 0.3 2 0.7
0 0 0 0 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The construction of vector d:

D1fi :=
fi+1 − fi

ℎi

d0 :=
6

ℎ0

(D1f0 − df0)

j := 1..n− 1 dj :=
6

ℎj−1 + ℎj

(D1fj −D1fj−1)

dn :=
6

ℎ0

(dfn −D1fn−1)

dT = (−0.53 10.28 4.19 − 10.5 18.33 − 12.14 − 0.15)

Remark. If we use this algorithm to construct a cubic spline function
which satisfies other boundary conditions we must change the definition of the
components d0 and dn.

The linear system Am = d is solved in Mathcad using the function lsolve.

m := lsolve(A, d)

The solution is:

mT = (−2.61 4.69 3.00 − 9.20 13.90 − 9.85 4.85)

The definition of the cubic spline function on a partial interval (see formula
(5)):

s(z, x, i) := mi
(xi+1 − z)3

6ℎi

+ mi+1
(z − xi)

3

6ℎi

. . .

+

[
fi −mi

(ℎi)
2

6

]
xi+1 − z

ℎi

+

[
fi+1 −mi+1

(ℎi)
2

6

]
z − xi

ℎi

The definition of the cubic spline function on the whole interval:
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S(z) :=

∣∣∣∣∣∣
vs← 0
for i ∈ 0..n− 1
vs← s(z, x, i) if xi ≤ z ≤ xi+1

Now we can use this function for interpolation. We can compute the value
of the cubic spline function at a point, for example,

S(2.15) = 2.423

or in many point simultaneously if they are declared in a vector (v, in our
case).

p := 0..last(v) vp = S(vp) =
1.50 3.626
3.25 4.112
4.75 4.373
6.55 5.532

To plot the nodes, we define a vector g that has all components equal with
zero:

k := 0..last(x) gk := 0

Finally, we realize the graphical representation shown in Figure 1.

Example 3.2
In this example we construct a natural cubic spline function using the same

input data like in Example 3.1. This is done firstly with Mathcad functions
interp and lspline, and secondly by a simple modification of the algorithm
of Example 3.1.

Using lspline function we compute the vector of moments:

ml := lspline(x, f)

mlT = (0 3 0 0 4.16 3.13 − 9.16 13.53 − 8.1 0)

The first three components (0, 3, 0) are internal code of Mathcad used by
interp function to know what type of interpolation to do. The fourth zero
and the last zero correspond to the natural boundary conditions.

By using the vector ml and Mathcad function interp we define the cubic
natural spline function denoted SL(x):

SL(z) := interp(ml, x, f, z)
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FIGURE 1. A cubic spline function with end slope boundary conditions.

The values of this function at the points contained in vector v are:

SL(v) =

⎡⎢⎢⎣
3.572
4.101
4.390
5.947

⎤⎥⎥⎦
For plotting the graph of this function we define the range variable t,

n := last(x) t := x0, x0 + 0.01..xn

and a vector g with null components,

k := 0..n gk := 0

The graph is shown in Figure 2.

To obtain the natural cubic spline using the algorithm of Example 3.1 we
must make the following changes:

c0 := 0 bn := 0 d0 = 0 dn = 0
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FIGURE 2. A natural cubic spline function.

The obtained spline function is denoted by Sl(z). The following table shows
the values of this function at the components of vector v and the differences
between these values and the values of the functions SL(x) at the same points.

p := 0..last(v)

vp = Sl(vp) = Sl(vp)− SL(vp) =
1.50 3.5721518772 0.0000000000000
3.25 4.1014766405 0.0000000000000
4.75 4.3895442007 0.0000000000000
6.55 5.9466972985 0.0000000000000

Example 3.3
In this example we construct a cubic spline functions which satisfies the

boundary conditions S ′′(x0) = S ′′(x1), S
′′(xn−1) = S ′′(xn). The input data

are the same like in the above two examples. For this purpose we use first the

629
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Mathcad functions pspline and interp, and second a modified version of the
algorithm of Example 3.1.

mp := pspline(x, f)

mpT = (0 3 1 3.46 3.46 3.3 − 9.1 13.09 − 5.95 − 5.95)

The first three components (0, 3, 1) represent the code given by this func-
tion to the interp function.

SP (z) := interp(mp, x, f, z)

SP (v) =

⎡⎢⎢⎣
3.500
4.088
4.410
6.456

⎤⎥⎥⎦
The function SP(z) could be obtained with the algorithm of Example 3.1

if we do the following changes in it:

c0 := −2 bn := −2 d0 = 0 dn = 0

The obtained function is denoted by Sp(z). We show the values of this
function at all points existing in vector v and compare the values of Sp(z) with
their of SP(z).

p := 0..last(v)

vp = Sp(vp) = Sp(vp)− SP (vp) =
1.50 3.5004875631 0.0000000000000
3.25 4.0882334341 0.0000000000000
4.75 4.4097381712 0.0000000000000
6.55 6.4560788161 0.0000000000000

Example 3.4
In this example we construct a cubic spline function which satisfies the

boundary conditions obtained by extrapolations (see Case 4 in Section 2).
Obviously, we use the same input data like in the above examples.

mc := cspline(x, f)

mcT = (0 3 2 3.6 3.46 3.22 − 8.75 11.64 0.78 − 24.56)

The first three components (0, 3, 2) represent internal code used by interp

function.
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SC(z) := interp(mc, x, f, z)

The values of these function at points contained in vector v are:

SC(v) =

⎡⎢⎢⎣
3.497
4.078
4.468
8.048

⎤⎥⎥⎦
This function can be obtained by using the algorithm of Example 3.1 if we

make the following changes:

1) The coefficient c0 and bn must be deleted.

2) The non null elements of the first and last line of the matrix A are
defined as follows:

a0,0 := 1 a0,1 := −
(

1 +
ℎ0

ℎ1

)
a0,2 :=

ℎ0

ℎ1

an,n−2 :=
ℎn−1

ℎn−2
an,n−1 := −

(
1 +

ℎn−1

ℎn−2

)
an,n := 1

3) The lines 2,3,...,n-1 rest unchanged.

4) The first and the last components of the vector d are defined as equal
to zero:

d0 := 0 dn := 0

The cubic spline function such constructed is denoted by Sc(z). Similar to

Example 3.2 and 3.3, we show the values of this function at the points contained
in v and compare these values with those obtained with SC(z) function.

p := 0..last(v)

vp = Sc(vp) = Sc(vp)− SC(vp) =
1.50 3.4966223058 0.0000000000000
3.25 4.0781840882 0.0000000000000
4.75 4.4683196933 0.0000000000000
6.55 8.0478124572 −1.77635683940025 ⋅ 10−15

Example 3.5
This example shows the importance of the boundary conditions for the

cubic spline interpolation near the end points x0 and xn.
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FIGURE 3. The differences between the functions SL, SP and SC
near the end points.

The input data:

x :=

⎡⎢⎢⎣
0
1
2
3

⎤⎥⎥⎦ f :=

⎡⎢⎢⎣
0
1
−1
0

⎤⎥⎥⎦
The cubic spline functions:

SL(z) := interp(lspline(x, f), x, f, z)

SP (z) := interp(pspline(x, f), x, f, z)

SC(z) := interp(cspline(x, f), x, f, z)

Elements necessary for plotting the nodes and these functions:

n := last(x) k := 0..n gk := 0

t := x0, x0 + 0.001..xn

The graph is shown in Figure 3.
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Nicolae Dăneţ - Cubic spline interpolation using Mathcad

At z = 0.5 these three functions has the following values:

SL(0.5) = 0.87500
SP (0.5) = 1.06250
SC(0.5) = 1.25000
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