The 4th -order Runge-Kutta method for a 2nd order ODE

By Gilberto E. Urroz, Ph.D., P.E.
January 2010

Problem description

Consider the 2nd-order ODE: y"+y y'+3 y=sin (x)

subject to the initial conditions: y(0)=-=1 y'(0)=1

This 2nd-order ODE can be converted into a system of
two lst-order ODEs by using the following variable
substitution:

ul=_l and u2=l at x=0
The variable substitution u =y is equivalent to:
d
E u l- u 2 [Eq l]

while the ODE is re-writtenas: y"=-y y'-3-y+sin(x)

or: d :
Euz-—ul-u2—3-ul+31n(x) [Eq. 2]

The system of equations [Eg. 1] and [Eg. 2] is transformed
into the vector ODE:

u
d |Y1|_ 2
dx v —ul-u2—3-ul+sin(x)
or, u
——u=f(x, u) , where u=s and
dx u,
Y2
filx, uJ= .
() —ul-u2—3-u +31n(x)
1
The initial conditions are us= _ll at xs= 0

Solution (version 1) :

The initial conditions are:

The end of the solution interval is:

Use 100 intervals:

Calculate the increment size, Ax:

Axi=eval

Xe— XS

n

Create the x solution vector:

xs:=0 us:= B l]
1

xe:= 20

n:=100

Ax=0.2

xsol:= eval(xs ; XS+ Ax .. xe)

The y-solution vector gets initialized as follows:

usoli=us

usol=

3]

The following "for" loop calculates the Runge-Kutta algorithm

(version 1) to produce the solution:

for kel ..n
x0:= eval[xsol k]

ul:=-eval

ul:=eval (col (uso1l, k)]

uO)]

uM)]

uM)]

xMi=eval x0+%- Ax
Kl:=-eval [Ax- £(x0,
uM:=eval u0+%- K1l
K2:=eval [Ax- f(xM,
uM:=eval u0+%- K2
K3:=eval [Ax- f(xM,
ul=eval (u0+K3)
xl=eval [xsol e l]
K4=eval (ax f(x1,

ul)]

uO+%-(Kl+ 2-K2+ 2 K3+ K4)

usol:i=augment (usol , ul)

After completing the iterative process, the solution is

stored in a row vector called "ysol".

This vector can be

transposed to put together the graph of the two solutions

as illustrated here:

usoli=usol

M1:= augment[xsol , col (usol , l)]

M2:= augment[xsol , col(usol, 2)]

Yy

M1
M2
The blue line represents ul[l]=y while the red line represents
ul2] = dy/dx.

Solution (version 2):

Y2
f(X’U)=—u ‘u,-3u +sin(x)
1 2
1

N L -1
The initial conditions are: xs:=0 us:= .
The end of the solution interval is: xe:=20
Use 100 intervals: n:i=100

Calculate the increment size, Ax:

Xe— XS
n

Ax:i=eval Ax=0.2

Create the x solution vector: xsol=eval(xs, xs+Ax . . xe)

The y-solution vector gets initialized as follows:

=1
1

The following "for" loop calculates the Runge-Kutta algorithm
(version 1) to produce the solution:

usoli=us
usol=

for kel ..n
x0:= eval[xsol k]

ul:=eval (col (uso1l, k)]

x13=eval xO+%-Ax

x23=eval xO+%-Ax

Kl:=-eval (Ax- £(x0, uO)]

ul3=eval uO+%-Kl

K2:=-eval [Ax- f(x13, ul3)]

uz23=-eval ul3+%-K2

K3=eval (Ax £(x23, u23))
ul=eval(u0+Kl-K2+K3)

x1l:=eval [xsol K+ l]

K4=eval (Ax £(x1, ul))

ul:=-eval

uO+%-(Kl+ 3-K2+ 3-K3+K4)

usol:=augment (usol , ul)

After completing the iterative process, the solution is
stored in a row vector called "ysol". This vector can be
transposed to put together the graph of the two solutions
as illustrated here:

usol:=usol
N1:= augment(xsol , col (usol , 1)]

N2:= augment(xsol , col(usol, 2)]

1

-2 0 2 4 8 10 12
N1
N2

The blue line represents ul[l]=y while the red line represents
ul2] = dy/dx.

