Introduction to the use of SMath Studio
Prepared by Gilberto E. Urroz, May 2010

Where to find SMath Studio?

SMath Studio 0.88 is freeware that produces notebook type of mathematical calculations.

You can download SMath Studio at this web site:
http://en.smath.info/forum/default.aspx?g=posts&t=425

Getting started

You will find the icon for SMath Studio in the folder SMath\SMath Studio under your
Program Files folder in your Windows machine, or under your Program Files (x86)
folder if you have a 64-bit version of Windows. The program is called
SMathStudio Desktop.exe. You may want to create a shortcut to the program to place in
your desktop or in your Quick Launch. Double click on the program icon or on the
shortcut to open the SMath Studio interface.

The SMath Studio interface S) SMath Studio - [Pagel] ==
To get started, find the SMath File Edit View Inset Calculation Tools Pages Help .8 x
Studio Desktop icon in your TmE@s & n -A90 WY @G
Start>Programs button in =
Windows. The SMath Studio T8 9 4t
interface is shown here. Lo A
.0 ==
The interface shows a main Nesweww=
window with menus, a toolbar, = [Eeaam 5
and a number of palettes on the Tt
right-hand side of the interface. Functions B
The palettes contain o jf: R _: ?
mathematical, graphical, and ap % d G 2w
programming functions that can sooESa
be placed in the main window Programming g
with the purpose of calculating L
mathematical expression, ¢ By § e ¢
producing graphs, or building e
small programs. e e
Symbals (A-9) =]
The SMath Studio menus " Helx oA
The SMath Studio interface (NEome s
TY ¢ X ¥ @

contains menus entitled File,
Edit, View, Insert, Calculation,

Tools, Pages, and Help. Besides these 8 menus, there is also a menu indicated by a page
icon located to the left of the menu bar. We'll refer to this menu as the Control menu.
Explore the different menus to become acquainted with the various options available in
them. The operation of the Control, File, and Edit menus is very similar to those of
other Windows applications, hence, the item therein contained would be familiar to
Windows users. Other menus are presented below.

page 1 © Gilberto E. Urroz, May 2010

The Help menu

The Help menu contains the option Reference book... which represents a modest attempt
by the author to address basic mathematical operations and definitions. The contents of
the Reference book are shown in the figure below. To find the contents of a particular
section of the Reference book, click on that section. For example, to see the contents of
the section entitled Identical Transformations, click on the corresponding link to produce
the screen in the middle. If you click on the link entitled Properties of arithmetic roots,
you get the screen shown to the right in the figure below. This provides some basic
properties of limits that can be useful to review those concepts from algebra.

4
(S Reference book = |[E S5 ['©) Reference book | =BS5S [(S Reference book = | 5] |t
Home Back Copy Home Back Copy Home Back Copy
Contents o +Identical transformations - Properties of arithmetic roots -
Identical transformations Properties of degrees - n "—'a-h n r_‘a R r_‘h =
Trigonometry Properties of arithmetic roots h
Logarithms L Propertiss of fractions =1 . njla __As
Derivatives of functions Formulas of the reduced multiplicatio b ”.jb
Limit E ti I dul
= T =) . Ioper es o modules at B0
Integrals
1T T 1T 1 m
Series i
—_— Contents :11,| m o
—_— - a =a
- - e -
« . 3 4 1 r Fl m »

You can go back one page in the Reference book by pressing the option Back, or return to
the Contents page by pressing the option Home. The menu option Copy lets you copy
equations from the Reference book that you can then paste in the main interface. To copy
a specific equation, first highlight the equation you want to copy, then press Copy, and
paste the equation (using, for example, Cnt/-v) onto the main screen.

The Help menu also contains the option Examples, which opens the following menu of
examples:

[Examples &

Available examples:

EEEETEEEmET .| (] Arabicio Roman numeral
Euclidean algaorithm (calculating the ¢ conversion
Expansion of function to Maclaurin st

Description:
Fifth-order Runge-Kutta method with SR
Function of the matrix (Sylvester's fon Algorithm for conversion Arabic numerals to Roman -
Hemite polynomials solving numerals.

User specifies a number using Arabic digits. Program
shows a result of conversion in Roman numerals form.

Hesse matrix and Hessian

Jacobi matrix and Jacobian

Lagueme polynomials solving
Legendre polynomials solving
Monlinear equations solving with cho
Monlinear equations solving with dick
Monlinear systems of equations solvir -
Nomercriegation ntbod (STPScr | ghor Compary)

m

1 m 3 Andrey lvashov (SMath, http://smath info,)
How to add your example here? [Open] [Cancel]

Click on a given example to select it, and press the [Open] button. The worksheet
corresponding to the example Numeric integration method (Simpson's rule) is shown
below.

page 2 © Gilberto E. Urroz, May 2010

S SMath Studio - [Simpson.sm] - — [E=
File Edit View Insert Calculation Tools Pages Help -
TmES D310 -AQ i mG &
= + [Arithmetic =]
Numeric integration method “lee i & at =
(Simpson's rule) T8 9 + (m v
4 35 6 - AW
Ll v
2 0 1 = =
£ [x)::x integrand
£ |[Matrices =]
a=1 inferior limitc [CHIT Y BT B
b=5 superior limit Boolean =]
n=20 accuracy = « > £ > X
=5 U 6
Functions =
h==b;a —'|log sign sin cos & LI
k2 In arg tan cot 4 I
n-1 n 1
exp % e (20 3D
int::%-%[f(a]+f[I+n [a+en)|+=n Z f[a—:+kh P:' =
k=1 k=1 Dor b o = o
e =
- if while for line [
int=41.3333 Symbols (o-a) =]
o B v 8 = &
o
m 6 1k A op
i) v £ o m p ©
If[x]dx=41.3333 T v 9 ¥ ¥ o
a - [Symhbols (A-22) =
4 0 3 A BT A E Z
Calculation: 1.236 sec. ﬂ
The Pages menu Pages | Help

The Pages menu shows the pages (worksheets) currently
open. After having opened the worksheet for the .
example shown above, the Pages menu will show two
pages open, namely, Pagel,the default page open when 1 Pagel®

we started SMath Studio, and Simpson.sm, the worksheet T e
we just opened from the Examples menu.
The Pages menu also shows the options New page and Close page, whose operation is
obvious.

| Mewpage Ctrl+N
G Close page Ctrl+F4

e p——=

The Tools menu
The Tools menu has two items (Options... and Plugins...). The Options... item opens the
following dialogue form with two tabs as shown below.

Options @J Options

Al
2| g
A (|4 [[4]]4 |E

Decimal places 4 = Interface language

Answer (set) Functions style

Fractions Decimal symbol . |period)

Equation systems Arguments separator , {comma)

Angle Font size 10 =

Integrals: accuracy 100 = Text color

Roots (range) 20 [20 | [|||| Textnhighlight color |
| Background color Auto x| M

Selection color futo -

page 3 © Gilberto E. Urroz, May 2010

The Calculation tab in the Options interface lets you modify basic settings for
mathematical calculations, whereas the Interface option deals with properties of the
interface window. Click on the different drop-down menus to select the setting you
would like to change.

The Plugins item in the Tools menu produces the following interface:

[Plugins ﬁ

Installed Plugins:
HTML Export (1.1.3753.43167 Q Special Functions

pecial Functions (1.1.3753.43100
¥MCD Files Plugin (1.1.3753.43032)

Description:
Special Functions builtin plugin for SMath Studio. -

Plugin handles primitives listed belaw: .
while{exprezsion’ file name’) - Write math expression to

file. i file with such file name exists function will overide

it. Will retum "1°if succeded, otherwise 07

rfile(file name’) - Read math expression from file, f such

file exists. Cften retums symbalic result.

dfile(file name’) - Remove file from file system, if such file -

Author:
Andrey lvashov {http://smath .info/)

SMath Studio 0.88 includes the three plugins shown above, namely:

* HTML Export: allows to save files to HTML format

* Special Functions: handles a number of functions. Scroll down the cursor to the
right to see all functions available. A brief description of the functions is
included.

* XMCD Files: allows to save and open XMCD files. This format is used by the
commercial software Mathcad.

The Insert menu
The Insert menu allows inserting a variety of items into the worksheet (or page), as
indicated in the figure below:

Matrix... Ctrl+M Matrix... Ctrl+M
fix) Function... Ctrl+E fix) Function... Ctrl+E
Operator... Operator...
¥ Unit.. Ctrl+U T Unit.. Ctrl+U
Ab Textregion " Ak Textregion
Separator Separator
Plot v » e Plot 8
Picture 4 D Picture 4 Create Ctrl+T
[E] Fromfile..

page 4 © Gilberto E. Urroz, May 2010

When you select the option Matrix.. , for example, it produces an entry form that allows
you build a matrix of a pre-determined size:

S5

Insert matrix

Rows: B o
Columns: 3 =
[Insert J [Cancel]

The option Function... opens up a menu of mathematical functions, i.e.,

Insert - Function

acosh{number) - Retums the inverse hyperbolic cosine.

Category Function’s name
Al
Matrix and vector acoth i
Complex numbers asinh
Trigonometric atanh =
Programming coth =
Strings csch
Files sech i
Example

acosn(0)=-1.5708 1
Description

[Insert

J [Cancel]

Selecting the option Operator ... in the Insert menu produces a list of Boolean, arithmetic,

and other operators, e.g.,

Insert - Operator

Operator

Boolean less than or equal to'
Boolean ‘greater than or equal to”
Boolean not’

Evaluate numerical

Evaluate symboalicall

Definition

Addition

Subtraction

Example

XFV

Description

Symbolic calculation of the equation.
Require two operand.

[Insert

J [Cancel

page 5

© Gilberto E. Urroz, May 2010

The option Unit... allows inserting units in calculations. The input form for Units... is
shown below, highlighting the listing of units of Force. The listing shows the name of
the unit (e.g., Micronewton) and the symbol used for its representation (e.g., uN).

Insert Unit ﬁ
Dimention: Uit :
All - Pﬁp |-1'CI|:I}' -~
Angle —| [Meganewton (TN}
Area _ || [Metric Ton Force (tonnef
Capacitance SN Micronewton (LN * =
Catalytic activity | [Millinewtan {mM)
Charge Mewton () =
Diose Poundforce (1bf)
Blectric cument Teranewton (TH) -
Eneg Ton Force (torf) i
Quick search: b
Frequency
lluminance e
|
[Insert] [Cancel

-

The option Text region in the Insert menu allows the user to insert text fields in the
worksheet with the purpose of documentation. This is equivalent to pressing the double
quote (") after clicking in any position in the worksheet. For example:

|So;utinn to a linear equation:”

Inserting a Separator simply means inserting a horizontal line to separate regions in the
worksheet, e.g.,

Solution to a linear egquation:

The insertion of plots and pictures will be illustrated in other sections of this document.

The View menu
The View menu includes an option for activating of deactivating a grid in the main screen
(Grid). Here is the same worksheet with and without a grid:

Solution to a linear eguation: Solution to a linear egquation:

page 6 © Gilberto E. Urroz, May 2010

The View menu also includes the option Dynamic Assistance that activates or deactivates
that particular option. When the Dynamic Assistance is active, every time that you type
a letter in the main screen, a drop down menu of functions starting with that particular
letter becomes available. You can then scroll down and select a particular function. For
example, if you type the letter d the following dynamic assistance menu becomes
available:

E
- » ||Day (Time)

¥ deg day —> 36400 s
F det

L dfile

F diag e

The drop-down menu shows functions day (a unit, described in the box to the right in
terms of the unit s, or seconds), deg (a unit, degrees), det (determinant of a matrix), dfile
(delete file), diag (create a diagonal matrix out of a vector), etc. Scrolling the cursor to
the right, up or down, will provide additional function or unit definitions.

The Calculation menu

The Calculation menu offer options useful when calculating symbolic or numeric
expressions. Unless a particular calculation has been selected, these options show as
inactive (shadow options) in the menu, e.g.,

Calculation

Solve

Calculate
Simplify
Invert
Differentiate

Determinant

Mh=able evaluation

Auto calculation
%

Recalculate page F9

Interrupt processing

The only active options shown above are Auto calculation and Recalculate page. The
meaning of these, and the other options shown above, is obvious.

To illustrate the use of some of the other items in the Calculation menu, click
somewhere in the main screen and enter the expression 5+7/3. Then, click on
the expression, and drag the cursor over the expression to highlight it. The

highlighted expression should look as shown in the figure to the right.

page 7 © Gilberto E. Urroz, May 2010

Click on the Calculation menu and select, for example the Calculate option. This
produces the result 22/3. Try using the other available options such as Simplify, and
Invert.

To check the use of the option Determinant first you need to enter a matrix in the main
screen. Click somewhere in the main screen, and use the option Insert > Matrix, and
change the number of rows and columns to 2, i.e.,

r b |
Insert matrix lé]

Rows: 2 =
Columns: 2 =
Insert] [Cancel

This results in the expression:
11
11

Click on each of the place holders, one at a time, and enter the values 2, 5, 3, and 1, so
that the resulting matrix is:

Click somewhere inside the matrix, and drag the cursor over the matrix to highlight it:

Next, click on the Calculation menu and select the Determinant option. The result is the
value -13, which is the determinant of the matrix shown above, namely, 2x/ — 5x3 = -13.

Note: I'm not familiar with the use of the options Solve and Differentiate in the
Calculation menu. Therefore, I am not including any examples of those options.
Examples of the function solve and of derivatives in SMath Studio are presented later in
this document.

page 8 © Gilberto E. Urroz, May 2010

The SMath Studio toolbar
The SMath Studio toolbar contains 19 icons briefly described below:

| TmES i | % w -Ag0 i ¥ &%
() G2y (3 (2) 5y 8y (7) (&) (8 (0 (1012 (13) (14) (15) (8} (17) (18} (18 (20) (21}
1. New page 12. Background color
2. Open (existing worksheet) 13. Control border (frames selection)
3. Save (current worksheet) 14. Align horizontally
4. Print (current worksheet) 15. Align vertically
5. Cut 16. Function (insert a function)
6. Copy 17. Unit (insert unit)
7. Paste 18. Reference book (see Help)
8. Undo (recent action) 19. Recalculate page
9. Redo (recent action) 20. Interrupt process
10. Font size 21. Show/hide side panel

11. Text color

Items (1) through (4) manipulate new or existing worksheets. Items (5) through (7) are
well-known editing functions. Items (8) and (9) will un-do and re-do the most recent
action. Items (10) through (12) adjust font or background properties. Item (13) allows
you to put a frame over an entry, for example, to show a solution to a problem. Items
(14) and (15) re-align selected cells. Item (16) and (17) open the Function and Unit
menus, as shown earlier under the /nsert menu. Item (18) is also available under the
Help menu. Items (19) and (20) were shown earlier in the Calculation menu. Item (19)
shows or hides the palettes on the right-hand side of the page.

Using SMath Studio as a calculator

SMath Studio (or, simply, SMath) can be used as a calculator. For example, open a new
page, and click on the main window in an area near the top left corner. A small red cross
will indicate the location where you want to enter a calculation. Type the following:

1+2/3+4/5 =

The result is the following expression:

Notice the way that SMath interprets the two fractions. Try the following example also:
click somewhere else in your worksheet and type:

5+2/3[~]+@4/5)=

page 9 © Gilberto E. Urroz, May 2010

The result is now:

s+ 242 6 se67
3 &

+3
Suppose that you want to calculate the expression 4 Use the following

keystrokes:
2 + 3 [space] 4 =

Here [space] means to press the space bar. The result is:

2;3 =1.2%1

The figure above shows the result immediately after entering the equal sign (=). If you
click somewhere else in the worksheet, then the result of this operation is shown as:

2+3
4

=1.25

More complex expressions can be built using the palette functions shown on the right-
hand side of the screen, for example:

Expressions such as the one shown above can be edited by clicking on the location where
the editing is to be done, and then entering factors or functions. For example, to modify
the expression above, we could click on the right side of the 3 within the square root in
the numerator, i.e.,

1
S+43-
5+3 -
=2.8471 1
. 3 1
ln|3+—|+exp |——
4 10

and type * 3 [space] ¥ 4. Then, select the 1 within the exp function in the denominator
and type over the expression exp(1.2). The modified expression will be the following:

315 1
S+ ——-
! a 543
=3.5648 1
5 expl|l.
ln|3+—|+exp|— £ =
4 10

page 10 © Gilberto E. Urroz, May 2010

Functions in SMath

Calculations in SMath may involve mathematical functions such as sin, cos, exp, etc.
You can insert any function by using the menu option Insert > Function... or by pressing
item (15) [f{x)] in the toolbar. As indicated earlier, collections of functions under the
headings All, Matrix and vector, Complex numbers, Trigonometric, Hyperbolic, and
Programming are available. The figure below shows the options for complex number

functions:
Insert - Function Iﬁ
Cateqory Function’s name
Al
Matrix and vector Im
omplex numbers DD'Z’Q"
Trigonometric Re
Hyperbaolic xyZpol
Programming
Strings
Files
Example
I 1
I | arg(3+3.1)=0.7854 | |
L 1
Description

arg(number’) - Retums the angle from the real axis to the complex: -«
number,

[Insert][Cancel]

he

In this example, function arg is selected. The argument (arg) of a complex number is the
angle that a vector representing the complex number in the complex plane forms with the
real (x) axis. As indicated in the figure above, as you select a particular function the
Insert — Function form provides an Example as well as a brief Description of the
function.

Typically, you will start an expression in the worksheet and, at the proper location, insert
the function that you need. For example, calculate the expression that uses the
hyperbolic function asinh:

|2+2 asinn(3+2.1)=7.0668+1.1413 4|

Functions =
log sign s cos &=

Some functions are available for insertion in the Functions

palette shown to the right: > > > > > > > > > —> — — - I B

exp % el {4 20 3D

To enter any of those functions simply place a cursor in the desired position and click on
the name of the function, e.g., type:

ln|——F——|=2.8409+3.1416 %
[s:n [3.2]]

page 11 © Gilberto E. Urroz, May 2010

Some of the functions in the Functions palette include operations typical from Calculus,
such as summation, products, derivatives, and integrals, e.g.,

5
10
Z = |=1.4636 &
2 | | Xx=3.6288-10
k=1lk
=1
1 g2
d—[x‘+1]—:»z-x J‘ 1 gy, 1699
dx 2 10000
1 1+=

In these expressions we used symbols that are available in the Functions palette as well
as other symbols available in the Arithmetic palette: Infinity (o), Symbolic evaluation
(—), and 7 (the ratio of the length of the circumference to the diameter of a circle).

Numeric versus symbolic evaluation

An expression that results in a number is evaluated using the numerical evaluation
symbol (=), whereas, an expression that results in a symbolic output needs the symbolic
evaluation symbol (—). Both symbols are available in the Arithmetic palette. The
numerical evaluation symbol (=) can be typed directly from the keyboard (it's just the
equal sign). The symbolic evaluation symbol (—) can also be entered by typing
Ctrl+period (Ctrl+.).

The examples above show the summation and product producing numeric results, while
the derivative and the definite integral produce symbolic results. Notice the difference
between numeric and symbolic results in the following integral:

3 3

= =
Iidt=l.0956 jidt_:’ﬁlﬁ'?'?ﬂ-_aﬂﬁﬂﬂaﬁ

t 2641424432 54947
1 1

In the current version of SMath Studio, the main difference between numeric and
symbolic results is whether a result is shown in its decimal form (numeric) or as a
fraction (symbolic) and other symbolic results such as square roots, etc. A proper
symbolic result in the integral above would have been the expression /n(3), however,
SMath Studio does not handle such type of symbolic calculations when the result
involves a function definition.

For an open-source, free program that would handle such type of symbolic calculations
please refer to this web site: http://www.neng.usu.edu/cee/faculty/gurro/Maxima.html.

Note: Use function eval to convert from symbolic to numeric results, e.g., eval(sqrt(3)).

page 12 © Gilberto E. Urroz, May 2010

An alternative for entering functions in expressions is simply to type the name of the
function. For example, click in another area of the main SMath Studio interface, and
type the following expression:

2.5%sin(2.5)+1.2*cos(2+3/(1+4*1.272))

The results of this operation will be shown as:

3

2.5'zin(2.5]+1.2.co= |2+

=0.5767
2
[1+4-1.2]

The Insert - Function menu in SMath Studio

As indicated earlier, the Insert - Function menu in SMath Studio can be obtained by
pressing the [f{x)] button in the tool bar. This menu includes function groups labeled A//,
Matrix and vector, Complex numbers, Trigonometric, Hyperbolic, Programming, Strings,
and Files.

* The Complex numbers, Trigonometric, Hyperbolic, and Programming function
groups include a relatively small number of easily recognizable functions.

* The Matrix and vector group includes a total of 30 functions useful for the
manipulation of and calculations with vectors and matrices.

* The Strings group includes functions used in manipulating and operations with
strings. These can be useful in programming.

* The Files group includes functions for reading, writing, and deleting files, as well
as for importing data into a worksheet.

As indicated before, examples and brief explanations of the functions are available in the
Insert-Function menu.

The A/l menu includes all existing functions in SMath Studio. Herein we group some of
those functions according to their applications:

e Functions specific to SMath Studio: eval, range, sys, error,

Functions for real numbers: abs, exp, Gamma, In, log, logl0, mod, nthroot,
numden, perc, round, sign, sqrt

Functions for algebraic manipulation: expand

Functions for solving equations: polyroots, solve

Functions for Calculus applications: diff, int, product, sum

Functions for interpolation: ainterp, cinterp, linterp

Statistics functions: random

page 13 © Gilberto E. Urroz, May 2010

Entering Greek letter in SMath Studio Symbols (o) g
Greek characters can be entered by using the Symbols palettes @« B v B e ¢
in the interface. These palettes, showing lower-case and m 8 1 x L p
upper-case Greek letters, are shown in the figure to the right. v 2 oo m p E
An alternative way to enter Greek letters is to type a letter in L S
. . . Symbols (A-1)

the English alphabet followed by Ctrl-g. This will generate a A BT A E
corresponding Greek letter. For example, typing g Ctrl-g T
produces the Greek letter ¥ (gamma). The corresponding _ i

. N &= O II P X
upper case character would be entered as G Ctrl-g, resulting in I'Y & X ¥ o
the letter I" (upper-case gamma). - —

The table below shows the letters of the Greek alphabet and its closest equivalent English
letters.

Lower Upper Letter English Lower Upper Letter English
case case name equivalent case case name equivalent
g A Alpha a v N Nu n
i B Beta b & = Xi X
4 I Gamma g 0 o Omicron o
) A Delta d T 7 Pi P
£ E Epsilon e ol P Rho r
Vg Z Zeta z o2 z Sigma s
n H Eta h r T Tau t
6 (&) Theta th v Y Upsilon u
! I lota i I @ Phi ph
K K Kappa k ¥ X Chi ch
A A Lambda / W ¥ Psi ps
i M Mu m @ 0 Omega o]

Clicking on any of the letters in the Symbols palette will copy that letter to any entry
point or text in the worksheet. To illustrate this fact we perform symbolic and numeric
calculations with trigonometric functions that features the value 7

_}ﬂ =in

&=

o o
—|+cos|— =
& [5

3in

Zlycos|E|=1.366
6 &

Notice that SMath Studio assigns the proper value to the symbol 7 in the calculation.

Defining variables in SMath Studio

To define a variable in SMath Studio use the assignment operator (:=). To enter this
operator simply press the colon key in your keyboard (:). Click anywhere in the
worksheet and make the following variable assignment: x := 2, by typing: x : 2. The
value of 2 is now stored in the name x. The value x = 2 will be replaced into any

page 14 © Gilberto E. Urroz, May 2010

expression containing the name x that is located below or to the right of the assignment
statement. To check this fact, type an equal sign in a location above the assignment
statement x:=2 and fill the placeholder to the left with the expression x’-3. The result is
inconclusive, as shown below. Then, repeat this operation in a location below or to the
right of the assignment statement x:=2. The result now is 5, as illustrated below.

3 x not defined in
¥ —3=1 —

region above
x - not defined.

= defined here xi=2

5 x defined in
¥ —3=25 < region below

Once you have made variable assignments, you can use the assigned variables to
calculate expressions. As an example, assign the values x: =-2 and y.=3, then calculate
the following expression: x°+)°. The result may look somewhat like this:

e PR A=3.466

The keystrokes used to produce these entries are the following:

<click> f Cntl-g : 1.25 <click> y Cntl-g : 2.35

<click> g Cntl-g : 2.22

<click> D Cntl-g : sqrt f Cntl-g ~ 2 + y Cntl-g ~ 2 + g Cntl-g ™ 2
<click> D Cntl-g =

The symbol <click> indicates that the user must click somewhere in the worksheet.

Using units

Units are important in calculations in the physical sciences. Units in SMath Studio can be
incorporated by using the Urit button in the toolbar (see item (17) in page 9). For
example, to enter the quantity 25 sp (25 horsepower), click somewhere in the worksheets,
type 25 and the click on the Unit button in the toolbar. Scroll down to find the unit
category Power, and select the unit horsepower ('hp), as shown below.

page 15 © Gilberto E. Urroz, May 2010

r 9
Inzert Unit lﬁ
Dimention: Uit
lluminance - | |Gigawatt [GW -
the V& Inductance orsepo (hp
Irformation Kilowatt (kW)
Length Megawatt [MWW) c
sum of Luminous intensity Microwatt (W) 1
Magnetic flux density Milliwatt {mW)
Mass =|| [Manowatt (nWW)
Potertial Picowatt (pWW)
— | | Water Horsepower (hhp) 2
Pressure) . A
Resistance Quick search:
Resolution 52
25 I
[Insert l [Cancel l

Press [Insert] to obtain the following result: |z 5 hp]

If you next press the equal sign, the quantity entered will be expressed using the basic
units of the SI (Systeme International, or International System of units), e.g.,

|25 npl=12642. 4562 7 |

Notice that the units are shown in blue italics font. This way the symbol m is different
than the symbol m in your worksheet, so you can use m for meters and m for mass, for
example.

Explore the units menu to see all the available unit categories (Angle, Area, Capacitance,
olume), and the available units. For example, for Angle, you have available the units
Degree(”), Degree ('deg), Radian ('rad), and Revolution ('rev).

Entering units without the Unit menu

An alternative way to enter units is to type the single quote, or apostrophe, symbol (')
followed by the unit symbol. This approach requires that you know the proper symbols
to enter. If the option View>Dynamic Assistance is active, you will get a menu of
possible functions and units to insert. If you are not sure of the symbol for the units to
insert use the approach shown earlier utilizing the full units menu. Here is an example
entering the quantity /00 uF (100 micro Farads, a unit of electric capacitance). Click in
your worksheet and type: 100 ' m Cntl-g F, then type the equal sign (=). The result is
shown below:

—4
100 uF=1+10 F

Notice that when you type the single quote (apostrophe) symbol, SMath Studio shows the
following symbol to indicate an impending unit insertion (call this symbol the unit
placeholder):

page 16 © Gilberto E. Urroz, May 2010

Try the following example where we perform a calculation using units:
2.5 "mg * 10.5 *ft [space] /7 (1.25 “hr [»]1[»] ~ 2 =

The result is given, by default, in units of the International System (SI):

10.5 £t -14
2.5mg—————_=1.3351:10 N

(6.8 nr)°

Converting units in a result
The result thus obtained can be expressed in other units by clicking to the right of the N,
which produces a small, black, rectangular placeholder as shown below:

10.5 £t -14
2.5mg—————"_=1.3351.10 17|

(6.8 ax] "

Click on the placeholder so that the placeholder gets selected, as illustrated here:

10.5 £t -14
2.5mg ——" "~ —1.3351-10 ol |

(6.8 nxr]"

Then, type the replacement unit(s). For example, if we want to show the previous result
using micronewtons (uN), type, in the placeholder, *m Cntl-g N, i.e.,

10.5 £t -8
2.5mg——-——"_=1.3351.10 uN

(6.8 nx) "

By a similar procedure we can replace the units with millinewtons (mN) as follows: click
on the right-hand side of the uN units, press the [«— Backspace] key twice to remove the
units, so that the unit placeholder shows up, i.e.,

10.5 £t

2.5mg—"—"=ung|

&
(6.8 mr)
Now, type mN, to get':
10.5 £t -11
2.5mg——" "~ —1.3351-10 mN

&

(6.2 hr)

'"When the unit place holder is active, there is no need to type the single-quote (apostrophe) symbol to enter
units.

page 17 © Gilberto E. Urroz, May 2010

Defining your own units
Suppose that you wanted to see the result in nanonewtons (nN). Attempting to replace
the micronewtons (mN) with nanonewtons (nN), we obtain the following result:

10.5 £t -14 p

2.5mg ——>"" _1.,3351.10 = —=2 N
A A

(6.2 hr) s~ nN

The unit substitution was not accomplished because the nanonewton unit (nN) is not
defined. You can check this by using the option /nsert > Unit ... and select the Force
category in the resulting menu:

Insert Unit ﬁ
Dimention: Uit :
All - Pﬁp |-1'(I|:I}' A~
Angle Meganewton (MM}
Area _ || | Metric Ton Farce (tonnef)
Capacitance =|| | Micronewton (M)
Catalytic activity | | Milinewton {mMN)
Charge Mewton (M) 3
Dose Pound<orce {1bf)
Blectric cument Teranewton {TH) -
Eneg Taon Force (tonf) &
Quick search: L
Frequency
lluminance i
|
[Ingert] l Cancel

The units are listed in alphabetical order and, obviously, there is no nanonewton (nN)
units listed. (Press the [Cancel] button to remove the menu.) Hence the impossibility of
replacing 4N with nN.

You can, however, define your own units if they're missing. For example, to define the
symbol for nanonewtons (nN) you can type:

*nN - 10 ~ -9 *N

This definition must be entered at a location in the worksheet above the point where the
calculation takes place. In this case, the conversion to nanonewton (nN) is successfully
performed as shown below:

Definition of nanonewton: nN:=10 i

.5 £t -5
2.5mg 2222 Tt _5 3351.10" " nw

(6.2 nr)"

page 18 © Gilberto E. Urroz, May 2010

Physical constants available

The collection of units in SMath Studio include two physical constants referred to by their
typical symbol. These are the speed of light in vacuum (referred to as c), and the
standard acceleration of gravity (referred to as g). In SMath Studio you can show the
values of those constants using the notation for units. For example, to see the value of ¢
type "c = , or type "g = to see the value of g.

Units of the English System

In the United States of America, and in a few other countries, the traditional system of
units, known as either the English system (ES) or imperial system, is still very much in
use. Therefore, SMath Studio includes in their collection of units such ES units as
horsepower (see example above), /b (pounds), f# (foot, or feet), in (inches), etc. For
example, the values of the speed of light in vacuum and the standard acceleration of
gravity in units of the English system are:

c=%5.8357-10

Are pounds units of mass or force?

Modern usage in the physical sciences requires that the pound, /b, be used as a unit of
force, with the corresponding unit of mass being the s/ug, defined as / slug = 14.5939 kg.
However, in buying produce (e.g., meat, grain, etc.), the pound can be used as a unit of
mass with the conversion / kg = 2.2 [b. In SMath Studio the pound, /b, as well as the
ounce, oz, are used as a units of mass (Note: / [b = 16 oz). The corresponding unit of
force is the pound-force, lbf, defined as I Ibf = 4.4482 N. Thus, in physical science
applications use the pound-force, Ibf, when you are required to use pounds as a unit of
force. Another commonly used unit of force is the kip (kilopound) equal to 1000 Ibf.

What about the kilogram?

The kilogram is the basic unit of mass in the International System (SI). Nevertheless,
there is a unit of force called the kilogram-force, kgf, corresponding to the weight of / kg.
The definition of kgf is, therefore, 9.8066 N.

The cgs system

Before the adoption of the Systeme International (S1, or International System), back in
1960, metric units used in the physical sciences were grouped into two systems, called
the MKS (meter-kilogram-second) and the cgs (centimeter-gram-second). The MKS
system became the basis of the SI. The cgs system is used for applications requiring
small masses and/or distances. The units of force and work (or energy) in the MKS (now
the SI) system are the newton (N) and the joule (J), respectively. The units of force and
work/energy in the cgs system are the dyne and the erg. The units in the S/ and the cgs
systems are related by: I N = 10" dyne, 1 J =107 erg. SMath Studio includes the dyne,
but not the erg, in its collection of units.

page 19 © Gilberto E. Urroz, May 2010

Working with variables and units
Units can be attached to numerical values assigned to variables. The results of operations

with these variables will be given in the basic SI units. Here are some examples:

Example 1: Universal gravitation law. Calculating the force between masses m/ and m2,
separated by a distance d. The formula, shown below, requires us to use the universal

gravitational constant G, found elsewhere:

-11 m 8

G=6.673 10 — di=5.68710 km
A
kg s
18 15

mli=1.210 kg m2=2.610 kg

G'ml m2 ~

= F=0.647T6 N

F=64T7T60.4117 dyne F=0.1456 1br

Example 2: Relativistic mass — The equation below, belonging to Einstein's Special
Theory of Relativity, is used to calculate the mass of a body moving at a velocity v if the

rest mass is m0.

-6 5 km
mo=4.510 kg wi=150 10 & —2%
hr
mQ -6
—_— m=4.5004:10 kg

Notice that in the equation above we used the symbol for ¢ from the collection of Units in

SMath Studio.

Documenting the worksheet
In order to document your worksheet, you can add text to it by clicking on any place in

the worksheet and typing the double-quote symbol ” followed by the text. (Alternatively,
you can use the option Insert>Text Region in the worksheet menu). For example, the
following figure shows assignment statements interposed with text regions to produce a

readable document.

For the waluez xw=—2 and y=3

o]
o]

the zum of sguares is calculated as:
x +v =13

page 20 © Gilberto E. Urroz, May 2010

By dragging the cursor over the region where these fields were entered you can see all the
fields involved, both text regions and mathematical fields:

|Fr:ur the '-.ra'_ue.3||x:=—2||and| |1-,':=3|

%]
%]

|thn=_- sum of sguares is calculated as:|

Selecting worksheet fields for editing and repositioning

If you click on any of the text lines or the operations shown above, the corresponding
field will be shown enclosed in a rectangle. This indicates that the field can be edited for
text or math calculations. An example is shown below:

For the values xi=—2 and y=3

|thn=_- zum of =guares is ca'_cu'_lated as:| 2+ 2 13
X Vo=

A text or calculation field can also be selected by clicking in a region near the field and
dragging the mouse towards the field. In this case, the field is enclosed by a frame with
blue boundaries and a blue background, e.g.,

For the wvalusz x==—2 and y=3

58]
(8]

tihe zum of =goares i= calcolated as:

When selected in this way, a field can be dragged and positioned somewhere else in the
worksheet. For example, the result shown above could be re-organized as follows:

For the valwmes x=—2Z% and y=3

the som of sgwares iz calcolated as:

2 2

X +yv =13

A field selected by dragging can be erased from the worksheet by pressing the [delete] or
the [backspace] key. The selected field can also be copied and pasted by using Ctr/-C
and Crrl-V, respectively. By dragging on top of two or more fields, multiple fields can be
selected simultaneously for editing.

page 21 © Gilberto E. Urroz, May 2010

Horizontal and vertical alignment of cells
Items (13) and (14) in the SMath Studio toolbar (see figure below) provide for horizontal

and vertical alignment of cells in the worksheet.
NRESIL4hR4A L -A9ODI"E WY
(y @ @y & 5y 6 7)) @& @

oy Doy 3y (4) 13y (18 (T 0Ey 119) (20} (21)

Consider the following text and calculation cells that are misaligned horizontally:

and

|Fur the valuesl
xi=—2 Vi

Il
(L]

The four cells were selected by dragging the mouse, while holding the left button, over
the cells. Next, press button (14) in the toolbar to get the following result:

|For the valuesl|x:=—2| |and||y:=3|

Now, for an exercise on vertical alignment, consider the following vertically misaligned

cells:

These are some trigonometric funct.ions:|

1

%_

il [?] ey

coz

=0

b |

Tan
1s

i]=n:-.1939

After pressing button (15) in the toolbar we get the following result:

|Thv.=_-3v.=_- are some trigonometric funcr.ir:nns:|

.| m
gin|—
4

1]
cog |—
2

Tan

page 22 © Gilberto E. Urroz, May 2010

Adding images to the worksheet
Images scanned into the computer or produced by other graphic software can be
incorporated into your worksheet in different ways.

1 — Copying a figure from other software, clicking and using Paste (or Ctrl-v).
2 — Using Insert > Picture > From file ..., to insert a picture contained in a file.
3 — Using Insert > Picture > Create ..., to insert a picture frame where you can draw

your own picture. Use the mouse as a pencil. SMath Studio does not provide for other
drawing tools

Examples of the three cases are illustrated below. The only images allowed to insert
from a file are bitmap images. Through the cut-and-paste procedure, you can paste
images from any format.

(2) from file

(3) created by user

By selecting the field containing a figure, the figure can be repositioned in the worksheet.
Be careful, however, when dragging your mouse across a figure whose field has not been
highlighted. In such case, the mouse dragged across the figure will add lines to the figure
that you may not intended to add. In such case use the Undo button in the menu.

With text and calculation cells, plus image cells imported into or created within SMath
Studio, you can produce technical reports as would be required for class assignments or
for an engineering project.

page 23 © Gilberto E. Urroz, May 2010

Application — Writing an assignment in SMath Studio
The figure below shows a class assignment in fluid mechanics/hydraulics prepared in
SMath Studio.

LAezignment No. 18 - Open Channel Flow

Froblem 3 - Calculate the discharge through a channel of
circular cross-sections of diameter I = 3 £t flowing at a
depth vy = 2 ft. The channel iz made of concrete (n = 0.012)
and it i= laid on a =lope of 0.0005 ft/ft.

T £t yi=2 £t n=0.012 Sgi=0.005
—acos[l 2%] §=1.9108 rad

>

.~

52 R
* -— (6-=in[8) cos(8]) A=5.006 £t °
a
Pi=5D P=5.7313 £t R== R=0.8734ft
1 T
£ C % £t
Cu==l-486“5 g=—2\R " .a-f50 0=40.0509 —
n

If you prefer, you can click off the grid using the View menu to produce the following:

Azsignment No. 18 - Open Channel Flow

Problem 3 - Calculate the discharge through a channel of
circular cross-section=s of diameter D = 3 ftr flowing at a
depth v = 2 ft. The channel is made of concrete (n = 0.012)
and it iz laid on a 2lope of 0.0005 fr/ft.

/-f‘_‘\-\\ T D=3 ft yvi=Z £t ni=0.012 S50=0.005

\

E:acos[l—z-%i ©=1.8106 rad

%]

:» A::%-[E—sin(ﬁ]-coa[ﬁ]] A=5.006 £t *

A
P=6'D P=5.7318 £t R=— R=0.8734 £t
1 .
e C g_ It
t:u==1.f386*‘5 o=—=2.7 " n./50 0=40.0509 —
1]

Note: To enter multiple lines in a text box, use Shifi-Enter at the end of each line.

page 24 © Gilberto E. Urroz, May 2010

Predefined functions for real and complex numbers in SMath Studio
This section shows examples of predefined, or intrinsic, functions for both real and
complex numbers available in SMath Studio.

Functions for real numbers
The following functions are available for application to real numbers:

* abs absolute value

* exp exponential function

* Gamma Gamma (I') function

* In natural logarithm, i.e., logarithm of base e
* log logarithm of any base

* logl0 logarithm of base 10

* mod modulus

* nthroot the n-th root of a number

* numden decompose a fraction into numerator and denominator
* perc percentage

* round rounds to an integer

* sign extracts the sign

* sqrt square root

* random generates a random number

These functions are available, unclassified, by using the Insert > Function menu and then
selecting the A/l category of functions:

F ~
Insert - Function ﬁ
Categony Function’s name
I I -
Matrix and vector acos |
Complex numbers acosh =
Trigonometric acot
Hyperbolic acoth
Programming airterp
alg
Arccosec ~
| |
Example
L]
|-1|=2
Description i
abs({number’) - Absolute value | -
W
[Insert] [Cancel]
—)

page 25 © Gilberto E. Urroz, May 2010

Some of these functions are also available in the Functions

palette: The Function palette includes also trigonometric

functions (sin, cos, tan,cot), calculus expressions (summation,
product, derivative, integral), functions that apply to matrices (el),
and functions that apply to graphs (the last three symbols in the

last line).

Some of these functions are also available in the Arithmetic
palette. These include the absolute value (abs), the square root -
(sgrt), and the n-th root (nthroot) functions. Also shown in the

Arithmetic palette are the following items:

Mathematical Constants: Positive infinity (o), Pi (1),

Imaginary unit (1)
Numerical Digits: 0-9

Arithmetic operators: *, +, -, x, /, power

Functions =
log sign sin coz & 1L
In arg tan cot 5 I
exp % e { 20 3D

Arithmetic =]
cr T i + " =
§ 9 (w) s
4 3 6 - AW
2 3 = | =
o1 4 o= =

Evaluation operators: Definition (:=), Numerical Evaluation (=), Symbolic
Evaluation (—)

Postfix Operators: Factorial (!)
Editing Characters: Decimal point (.), Comma (,), Backspace («+)

Since trigonometric and hyperbolic functions apply also to real numbers, we provide a
list of those functions available under the Function — Insert form (see above) under the
headings Trigonometric and_Hyperbolic:

Trigonometric:

sin
Cos
tan
cot
sec
csc

Hyperbolic:

Examples of functions applied to real numbers

sinh
cosh
tanh
coth
sech

sine
cosine
tangent
cotangent
secant
cosecant

hyperbolic sine
hyperbolic cosine
hyperbolic tangent
hyperbolic cotangent
hyperbolic secant

asin inverse sine

acos inverse cosine

atan inverse tangent
acot inverse cotanget
arcsec inverse secant
arccosec inverse cosecant
csch hyperbolic cosecant
asinh inverse hyperbolic sine
acosh inverse hyperbolic cosine
atanh inverse hyperbolic tangent
acoth inverse hyperbolic cotanget

These functions can be inserted from the Functions — Insert form (Insert > Function
menu), the Functions palette, or simply by typing the name of the function into a region
of the SMath Studio worksheet. The following are examples of real-number functions in

SMath Studio:

page 26

© Gilberto E. Urroz, May 2010

J/JEXAMPLES OF FUNCTIONS FOR REAL NUMBERS: JfUOaing ™Ctrl+.™ instead of 7="

13
Jfabz: type "abs(-3.25)=" to produce: |—3.25|=3.25 |—3-25Léjr
X
//erp: type "exp(-0.5)=" to produce:: exp[—0.5]=0.6065 expf—O.S}%exp T
&
//"exp (-0.5)"is same as"e"™(-0.5)": -0.5 -0.5 1
o) t) s =0.6065 :
Je
S /Gamma: type "Gamma (1.5)=" to produce: Gamna(‘ 5]:0 2362 Gamma(l.s)% LR S e
< e ot 1000000000000000
/f1n: type "1n(3.2)=" to produce: in[3.2)=1.1632 ;:(3.2)—);:1["56]

ffmexp™ and "1ln" are inverse functions:

//log: type "log{l0,2}=" to produce: log 2(10]=3.3219 log 2(10]9'in(ﬁg)

inlz
//loglo: type "loglO(8.2)=" to produce: logl0(8.2]=0.9138 ;nglo(e.z)a;ogio[s—]
//mod: type "mod(18,5)=" to produce: mod[le ,5)=3 mod(lﬂ ,5]%3

The mod function applies to integers only, and it's described in the following example:

J//Function "mod"™ calculates the integer residual (r) of the ratio of two integers m,n,
J/where m>n and g is the integer guotient, i.e.: m/mn = g + r/m. Thus, if m is a multiple
J/fof n, r =0, and mod(m,n) = 0. Otherwise, mod(m,n} = r < n. S5ee the following sxamples:

mod (5, 1)=0 mod (5, 2]=1 mod (5, 3)=2 mod (5, 4)=1 mod (5, 5]=0

/4 Thus,
/{ another integer n, for if that is the case then "mod(m,n) =

function "mod™ can be used to determine if an integer m iz a multiple of
B %

S fothroot: type "nthroot(81,3)=": 3 El—>3 a1

[¥L]
(EE]
o

I
1=
L
]
o
=]

Function numdem, shown below, separates a fraction into a numerator and a
denominator:

PR
J/numden: type "numdem(27.4)=": numden[27.4]=

J numden[Z?.E]—)[lg?]

L

1+42
7|3 +sin [%]

1+.4/2 2.7182:10

= numden
. o 15
43 +=2in E} 1.2604.10

1+./2
43 +=2in [%]

numden

Notice that, in its numerical evaluation, the last example shows both numerator and

denominator multiplied by 1015. These two factors obviously cancel when the fraction is
put together again, but it serves to emphasize that SMath Studio calculates values with 15

decimals.

page 27

© Gilberto E. Urroz, May 2010

More functions for real numbers are shown next:

27.4 137
{/numden: type "numdem(27.4)=": nmden(27.4)=[i J numden (27.4) [i J
//perc: type "perc(10,25)=" perc(10, 25]=2.5 perc(10, 20]+pexc(i0, 20

firound: "round(®,n)}™ rounds up a floating-point value X to n decimal figures:

round[10.23446, 4]=10.2345 round[-3.12567, 4)=—13.1257
round[10.23446 , 3]=10.234 round[-3.12 557, 3)=—13.126
round[10.23446 , 2)=10.23 round[-32.12567 , 2)=—-3.13
round[10.23446, 1]=10.2 round|-3.12567, 1]=-3.1
round(10.23446, 0)=10 round [-3.12567 , 0]=-3

J/ Function "zign(=)™ returnz the walues -1, 0, or 1, depending on whether
/f = is negatiwve, zero, or positive, e.g.,;

gign(-3.5)=-1 sign(0.0]=0 sign(3.5)=1
//sgrr: type "sgre(23.54)=" to produce: 23.54'=4.8518 JEaad Aot

Function rand is used to produce random numbers, as indicated below:

/4 Function "rand({x)" produces a random number uniformly distributed between 0 and x.
/4 The argument "x" must be & positive number. Other examples:

random(10]=2 random(100)=29 random(200]=54 random(1000)=851

// Function "random" returns integer numbers. If we were to need a random number
/{ between 0 and 1, with n decimal figures, use: random(10°n)/10"n, e.g:,

2 3 4
randnm[lo a] random[lc-] random[lc- J
&~ 1

10 10 10

=0.90459

//f To generate d@ uniformly-distributed random number in the imnterval [a,bl,
/{with a<b, use: a + (b-a)*random(10"n)/f10~n, where n = 2, 3, 4, ..y 2.Q.:

g
Iandom[lo]
20— *-53.§

z0+(80-
il 53
10
// You can write your own function "myrandom™ to calculate random numbers:

n
] random [10]

myrandom(a M o 2N n]:=a+ (b—
n
10 e
//Ezamples: myrandom(50, 100, 5)=76.378 myrandom (50, 100, 5]=78.82
myrandom (50, 100, 5]=84.0755 myrandom(50, 100, 5)=69.4585

The following exXample shows how to produce a row vector of random values in the range
[50,100] using n=5:

1} Press "for" in the "Programming™ palette

for k=1 ..10 2}y Type k-in the first place holder in "for"
E :=my:andom(50 o | e 5] 3} Type "range{l,10}" in the second place holder in "for"
Lk 4) Typel "x[1l,k <space bar> :" below the "for" line

5} Click outside of the region, and type "x="

=(65.848 €8.176 20.855 77.108 54.498 81.336 81.732 88.2085 890.836 66.?025]

page 28 © Gilberto E. Urroz, May 2010

Functions exclusive for complex numbers

The Function — Insert form provides the following functions that apply exclusively to
complex numbers (let z=x+iy represent a complex number):

* arg angle in complex plane, arg(z) = atan(y/x)

* Im imaginary part, Im(z) =y

* pol2xy convert polar coordinates to rectangular coordinates
* Re real part, Re(z) = x

* xy2pol convert rectangular coordinates to polar coordinates

The following examples show applications of these functions to complex numbers:

J/EXAMPLES OF FUNCTIONS PROPER TO COMPLEX NUMBERS:

FFoarg(z): a:rg[:2+2-"_:I=O.'?85'i
fiRe(z): Rel-3+5.1)=-3
fiImiz): Im(~3+5i]=5

i . | o
J/polZxy: po_ny[s F 2=

//xyZpol: xv2pol(3, 4]]=i(

—15
4.3301+1.6653-10 i

-15
2.5-2.7756 10 :

JJ/Using "Ctrl+." instead of "="
aIg[2+2-i]—>aIg (2-(1+1J]

Rel-3+5-i]+Re(-3+5:1)

Im[-3+5-i]sIm(-3+5 1)

o
5 —
v 5]

Xyipol (3 . 4]]—) Xyipol (3 . 4]

polZxy

3, %]—)po'_z:-cy

The function abs, when applied to a complex number, produces the modulo (length) of
the complex number. Function abs is not included in the listing of Complex Numbers
functions in the Insert — Function form. However, abs, and many other functions that we
applied to real numbers above, can be applied to complex numbers as illustrated next:

//EXAMPLES OF FUNCTICONS FOR COMPLEX NUMBERS:
//abz(z): |[¢.5+3.1.2|=5.2522
fiexpiz): exp(2+3-1]=-7.3151+1.0427 1
77 e® % o _146.9270-20.9441.1
//Gamma (z) : Gamma [1.5+2.6-1)=0.0319+0.1071 %
Jiln(z) In(3+i)=1.1513+0.3218 %
f/loglz, =) : log,[10+1]=3.3291+0.1438 1
//loglo(z) : loglo(23.2-3:1)]=0.9411-0.1523 %
f/othroot(z,n) 1303 705"y 77474 0.5464 1
fiperc(p,z): perc(10, 25+50:1]=2.5+5 %
/isgre (z) —5+3-1=0.6446+2.3271-1

page 29

/{Using "Ctrl+." instead of "="

S0+62-1

|q.5+3.1-:|—>‘ —
20

exp(2+3-i)—>exp(2+3-i]

5—-31i 5—-31
e e
o - 1515%0422302300700000000
Gamma (.’L+;.-'_)—>

1000000
In(3+i]=1n(3+1)
inf10
log, (10)—}%(2]J
loglo(g8.2-3 i)+ loglo %}

3fays i3 a1

perc(1o, 25+10-i]3perc(10, 25+10:1]

v

A543 i s 531

© Gilberto E. Urroz, May 2010

Rectangular and polar representation of complex numbers
A complex number written in the form z = x + iy is - ;
in its rectangular (or Cartesian) representation. iy E- xHy = (xy)=re
Thus, it can be written also as the ordered pair (x,y),

and be represented in an Argand diagram in which y
the abscissa is x and the ordinate is iy. An alternative

way to represent point (x,y) is through its polar X
representation whose coordinates are (r,6). The X

proper way to write the polar representation of a

d

i0__ . .
complex number is through the use of Euler's formula: ¢ ~ cos(0)+isin(0) ity

this result,

z=x+iy=rcos(0)+irsin(0)=r(cos(0)+isin(0))=r e’

SMath Studio provides functions xy2pol to convert from rectangular (x,y) into polar (»,6)
coordinates, and pol2xy to convert from polar (7,6) to rectangular (x,y) coordinates.
Thus, with these functions one can go easily go from rectangular to polar representations
of a complex number, and vice versa.

In the following example we convert from rectangular to polar representations of a
complex number:
// EXAMPLE: Rectangular to polar

zli=3+4 1 F/ 21 in rectangular form
ri=|z1| ri=5 // componentz of polar form
gl=arg(zi) §1=0.9273
.] . L .
®xy2pol [3 . 4]: 4 dz7k JJ/ direct way to calculate polar form
=S Ff with "xyZpol®

The following example shows a conversion from polar to rectangular representations of a
complex number:

// EXBMPLE: Polar to rectangular

6 z2 in polar form
z2i=10'e f/ 22 B +
z2=8.6603+5'1 // shown directly in rectangular form
x2:=ge[22:| x2=8.68603 /J/ or you can separate components

// of the rectangular form with Re, Im

- —-15 J/ Rltermatively, use
polZxy |10, E]: 8.6603+3.2307-10 — /f polZ2xy to calculate
5_5_5511.19_15.-—_ // rectangular components

Note: the imaginary parts of the results from "polZxy"™ contain
numbers so small (e.g., 3.3307x10"(-15))that they're basically zero.

page 30 © Gilberto E. Urroz, May 2010

Operations with complex numbers
The following examples show operations with complex numbers in SMath Studio:

J/Operation=s with complex numbers:

zl=3.2-1.5'1 z2=—5.2+2.21

S/ addition: zl+zZ2=—2+0.7 1

J/ subtraction: z1-z2=8.4-3.7'1

ff multiplication: z1l'z2=—13.34+14.84 1
z1 - - .

f/ division: —=—0.6255+0.0238'1
z2

Ff conjugate: zlc:=Re|:zl:I—‘_-Zm|:zl:I

zlc=3.2+41.51

‘ ‘ . |z=x+i‘_-,f=|:x,‘_-,f}=reiﬁ|
The complex conjugate of a complex number is the 1y
reflection of the number z = x + iy about the x axis,
i.e., z =x—iy. This is illustrated in the figure to v r
the right: B
X
-
X
¥
J{Powers of u:u:lm_[:-l»a:-ct
Sithe imaginary conjugate '
Jfunit: Z=x-iy = (xy)=re
2 All other operations follow the rules of algebra with the caveat
- -1 that i’ = -1, etc. Other powers of the unit imaginary number
3 -1 are shown in the vector to the left.
I
- g L2 Using the conjugate we can write: z-z=r"
i This calculation is illustrated below:

z0=—2.5+6.2'1 J/ number
zlo=—2.5-6.2'1 // conjugate
g0 z0c=44,89 FSinumber ® conjugate

z0'z0c =6.6851

|zo|=6.8251 // abs(z0)

page 31 © Gilberto E. Urroz, May 2010

The Gamma function

Most readers with courses in Algebra and Calculus I will be already familiar with most of
the functions for real and complex numbers presented in this document. The Gamma
function may be an exception, since it is an advanced mathematical function and
probably would not have been introduced in those courses. The Gamma function is
defined by an integral, namely,

F(x)=f e dt
0

The Gamma function is related to the factorial operator as follows: I'(x+1)=x/! | ifx
is an integer.

The following examples use the Gamma function in some calculations:

Gamma [5)=24 41=24
Gamma [5.6]=61.554

Gamma [3+31]=-0.4401-0.0636 1

Note: the Gamma function currently defined in SMath Studio 0.85 cannot handle negative
arguments, or complex arguments whose real part is negative. For many applications this
definition will be fine, but the full definition of the Gamma function should be able to
handle negative arguments. Based on the paper “A note on the computation of the
convergent Lanczos complex Gamma approximation” by Paul Godfrey (2001), found in
http://home.att.net/~numericana/answer/info/godfrey.htm#lanczoscoeffs , I redefined the
Gamma function to include negative arguments, as follows:

The figure to the right also shows some :
calculations of the modified Gamma function, MGEXJ:'szifa (x)

and a graph of the function. else ma
o||=x|+1
Gamma [|x|+2]-3"_n[11-[|x|+1]]

Compare the graph with that shown in the one
shown in the wikipedia entry:

14

5 myG[-2]=1.6983-10 i

2
] myG(-3)=—4.0513-10

http://en.wikipedia.org/wiki/Gamma function nyG (_i i]: 2

]

myG(;:i

page 32 © Gilberto E. Urroz, May 2010

User-defined functions
You can define your own functions by using the expression

function_name(argument(s)): function_expression

Examples of definitions and evaluations of functions are shown below:

I[x]::T I gt zfz)=1.4841 z(3)=2
0

Plots of functions in 2D — a brief introduction

SMath Studio allows the user to insert two-dimensional (2D) plots by using the 2D option
in the Plot palette, or the menu option Insert > Plot > 2D. This action will open a 2-D
graph window, as illustrated below:

In the place holder on the lower left corner of the graph window you can enter the name
of a function to plot, e.g.,

page 33 © Gilberto E. Urroz, May 2010

3_“-[;(]

If you click on the graph window, you can drag one of the window handles shown below
(right-hand side, bottom, or lower right corner) to modify the size of the window.

31:@

Some resizing examples are illustrated below:

.3‘_::.-@

page 34 © Gilberto E. Urroz, May 2010

Plotting more than one function

To plot one than one function, use the Equation systems option in the Functions palette,
namely,

Functions =
log sign sin cos & I
In arg tan cot 5 I

exp % e [d]20 30
T

| Equation systerns I

2

to insert more than one function in the function placeholder for the graph window. Here
is an example:

Plots of functions in 3D — a brief introduction
Use the 3D option in the Plots palette, or the
menu option Insert > Plots > 3D. Type the
equation f{x,y) in the place holder located in

the lower left corner of the graph window.

You can drag the mouse pointer in the graph
window to rotate the graph for a better view

of the mesh surface, as illustrated here:

Resizing of the graph is also possible as done
for 2D graphs.

As we did with 2D plots, you can plot
more than one 3D plot as illustrated in
the graph to the left.

2
Z25—-x
! 2
25-v

page 35 © Gilberto E. Urroz, May 2010

Additional manipulation of graphs Plot =
Additional manipulation of graphs is possible using the Plot Do P o o= o
palette. The Plot palette includes the following buttons:

(1 (2 (3) (4 3} (B)

(1) Rotate — for 3D graphs, default setting

(2) Scale — With Ctrl or Shift, while dragging mouse over the graph, for proportional
scaling — play around with this command to understand its operation

(3) Move — move the graph around in existing graph window

(4) Graph by points — show graph made of discrete points

(5) Graph by lines — show graphs made of continuous lines

(6) Refresh — refresh graph window to its default settings

Try these options on your own to learn more about the different Plot palette actions. The
example below shows a proportional scaling using item (3) above, while holding down
the Shift key.

NOTES: (1) For additional examples of 2D and 3D graphics see Appendix 1.
(2) For examples of 2D geometric figures see Appendix 2.

Plotting your own functions
Define a function as indicated earlier, and replace the function name in the graph window
place holder. Here is an example:

page 36 © Gilberto E. Urroz, May 2010

Defining functions with the if function
Some functions require more than one expression for their definition. For example,

Fx) x+1, x<2
X)= .
x?, x=>2
This function can be defined using the if function in the P .

. . . . rogramming =
Programming palette. When selecting this option, the i while for line
following programming structure, with placeholders, is
produced:

clemi | Fle)as x<s

1 To program the function 1ide

elze shown above, we can use: —t3

1 x

If the definition of the function requires more than two expressions, it will be necessary
to use nested if programming structures. Consider the following example:

Function defined as: Function programmed as:
Flx]=1if x<2
x+1, x<2 i1
F(x)=<{(x+1)?, 2<x<4 =lse
if %<4

(x+1)°, x>4

(x+1)%)

A plot of this function is shown below:

More details on programming in SMath Suite will be provided in a later section.

page 37 © Gilberto E. Urroz, May 2010

Functions defined by calculus operations

The Functions palette include four operations that are proper from calculus: summation,
product, derivative, and integrals. These functions can be incorporated in the definition
of functions as illustrated in the following examples:

-3 [H s

[Limits must be integer. |

| k=1 g(2]=0.02 Im

[Limits must be integer. |

h(x,t]=;—t K2+tl-—::[t.]] h[:x,t,]_;._l-'--—xn[t]
r[x]’=J[[l+t]2]dt - (2)=56.3333 L@ 91l ebs
1

Notice that the functions f{x) and g(x), whose argument defines the upper limit of the
summation and product, are only defined for integer values.

Solving single equations with solve
Function solve can be used to solve single equations. The function can be called using
either of the following calls:
solve(equation, variable)
or
solve(equation, variable, lower limit, upper limit)

Examples using both symbolic and numeric results are shown below:

3 26207 3
30'_'-.re[x —18=0,]—:»i zolve [x —lﬂ:O,x]=2.620?
10000
21213
| 2 5000
solve|x —-18=0,x, -5,
21213
5000
] [zlaﬂ 55] —4.24286 F{x)=x 1n(x)=5
solve|x —-18= X, - = x|l=x1nl|x]|-
T 1 4.2426
37687

solve[F(x)=0, x,-10, 10]s——+ soive[F(x]=0, x,-10, 10)=3.7637
Function solve provides only real roots. Polynomial equations can be solved using

polyroots, as described below.

Boolean =
. El < »x = ZF =
Note: to enter the Boolean equal sign (bold =) use S w
CZ?’Z+:, or the SymbOl 11’1 the BOOleal’l palette — Boolean IEElLlﬂl to' |:|:tr|+:] I

page 38 © Gilberto E. Urroz, May 2010

Application: Solving for the flow depth in an open channel flow

The following example shows how to use function so/ve to calculate the normal depth of
flow in an open channel flow of circular cross-section. The problem statement and
solution commentaries were all entered using SMath Studio. Also, a figure was created
using Window's Paint and pasted into the SMath Studio worksheet. To facilitate the
solution, units were not used. The solution shown is y = 1.7077 ft.

Problem from open—-channel hydraulics:

4in open channel with a circular cross-section of
diameter D = 3 ft i= laid onm a =slope So = 0.0005
and carriezs a discharge Q0 = 10 cf=s. If the channel
iz made of concrete, with a Manning's coefficient
n = 0.012, find the normal depth of flow, v = 7

Solution: Use Manning's edquation: 5

0 = discharge (cf=), ca A &

n = Manning's coefficient, g=—: H-4ﬁﬂ;
L = area (ft~2), 52

P = wetted perimenter (ft), =] E

S50 = bed slope.

Functions for & and P are defined below. These
functions use the auxiliary wvariable 8 (y¥), that
reprezents the half center angle in the flow.

To facilitate solution, we don't use units, but the
values used in units of the English system are
consistent:

D=3 Q=10 So=0.0005 + o ——
e
Cu=1.486 ni=0.012
-
8ly|=acos|l-2 = D
¥) [: E] TN
| -
Fly)=8(y]D \J ¥
3 —_—— e
D .
B(y)=—(e(v)-=1n(s(¥))-cos (8 ()]
+
3
cu Af]3 1.7077
_Cu aly]) |t
solve |Q= E_ﬂfSD , ¥, 0,3 [1.?9??]
3

page 39 © Gilberto E. Urroz, May 2010

Changing the number of decimals in the output

Most of the numeric calculations and equation solutions shown so far in this document
use four decimals (default value). Using the Tools > Options menu item you can change
the number of decimals in the output. For example, changing to 15 decimals for output,
we solve the equation presented above to obtain the following results:

[Options I&]
Decimal places 15 =
Answer (set) Ipum vJ
. cotveln?_15m0 x]_—a.zazsaoseulaza
ractens | Decimal v - ST % 4.24264068 711928
Equation systems INI values vJ
Angle IF{adians vJ
Integrals: accuracy 100 =
Roots range) 2 B a B For the rest of the examples in this document we
will use the default number of decimal figures,
ok | Gnesl [l e 4 decimals.

Solving polynomial equations with polyroots

Function polyroots returns the roots of a polynomial using as argument a column vector
with the polynomial coefficients. The coefficients must be entered in the vector in
increasing order of the power of the independent variable. For example, the vector
corresponding to the polynomial 7 + 2x - 5x° is:

vi=| 2 olyroots(v) —0-2873
=| 2 1 T |=
i 0.62832
-5
To enter a column vector, a row vector, or a matrix, use the first |[Firices g
icon in the Matrices palette. This icon opens a dialogue box GOl |al o7 AF M2 W

where the user can select the number of rows and columns for
defining a vector or matrix. By default, the dialogue box uses a 3x3 matrix. For the
column vector v, shown above, we used, of course, 3 rows and 1 column:

page 40 © Gilberto E. Urroz, May 2010

b |
Insert matrix Léj

Rows: 3

Ak |k

Columns: 1|

[Insert] | Cancel |

ke

Unlike function solve, which provides only real functions, function polyroots provides
either real or complex roots, or both. For example:

b

. 0.2647+0.3996 1
wi=| polyroocts(w)=|0.2647-0.39%961
-1.2436
7

Application: Solving homogeneous, linear, constant-coefficients ODES
A n-th order, homogeneous, linear ordinary differential equation (ODE) with constant
coefficients is represented by the expression:

d"x d* lx d*x
a&:n +a, 1w+...+(?1?+(11 E+a.:.x=[:l

Introducing the notation D" = d"()/d{", the general n-th order equation can be written as:

D'x+a, 1Dx+...+a;DJx+a1Dx+a.:.x=D

This expression can be “factored” in terms of the D operators to read:
(D"+a, D" '+..+a,D*+a,D+ay) x=0

If we take the expression between parentheses and replace the D operators with the
variable A, and make it equal to zero, we would have produced the so-called
characteristic equation of the ODE, 1.e.,

AN4a, (A" @A e A+ap=0
There are, in principle, n solutions of this polynomial equation, namely, 4, 4,, ..., 4,
Some of these solutions could be complex (or imaginary), or even repeated. In the case

that all solutions are real and non-repeating, the general solution to the original
homogeneous ODE is given by:

x(t)=A e '+ d,e™+ + 4"

If a root 4, repeats k times, it will result in & terms in the solution given by

el (A, + Ayt + At -+ A"

page 41 © Gilberto E. Urroz, May 2010

If there are complex roots, they will be an even number of them, i.e., pairs of complex
conjugates. Thus, if one of those pairs of complex conjugate roots is 4, = ¢+ fiand A,
= a - 1, then the following terms will appear in the solution:

Ae™ cos(ft)+ A,e™ sin()

Function polyroots can be used to solve the characteristic equation, or characteristic
polynomial, for an n-th order, homogeneous, linear ODE. The roots of the characteristic
polynomial can then be used to build the solution. One example is shown below.

+
Solve the eguation: ;a”}' dy 0

Solution: Using the "D"™ operator, we can write the ODE as:

3
5D +3:D+1)-y=0

The characteritic eguation is:

3 s 3
SAh +3-A+1=0 or 1+3'A+0'% +5'A =0

The roots of this characteristic eguation are found using:

—-0.291%
=(0.14535+0.8148'1
0.14535-0.8148'1

polyroots

n o

Thus, the =zolution to the O0DE can be written as:

v(x]=Al-exp(-0.2919 t]+exp(0.1459 t):(A2 cos(D.8148 t)+A3 5in(0.8148 t]]

To determine the constants Al, AZ, and A3, we neesd to apply certain
initial conditions,e.qg.,

v(o]=1 yr'(o]=-2 v o]=3
For which we need to find the first and second derivativezs of yv(x).

The calculation of derivatives is all performed using symbolic calculations, and the
results are very long. Also, the current version of SMath Studio (version 0.85, 09/2009)
doesn't simplify results and keeps the value exp(0) instead of 1. Helping SMath Studio
with these shortcomings, and with a lot of patience, you can get to put together the
system of linear equations needed to solve for the coefficients A1, A2, and A3, in the
solution to this ODE. (The figure below shows only parts of some calculations).

page 42 © Gilberto E. Urroz, May 2010

;—t[ﬁl-exp (~0.2919.t)+exp(0.1459 t)(a2 cos [0.8148 t]+A3-sin(0.81428 ¢]]|>

2815t

2037t 037t e
—T2875000000-Al-eXp |— +10000-|20370000|-RA2'5in f—————-+B3-c03 = +3647500 |AZ-cos =
10000 2500 2500
dt 250000000000
Now, I'm going to substitute t = 0 into these results by making: Lo

ARl exp(-0.2919 t)+exp(0.1452-t)(A2-cos(0.8148 t)+A3 -5in(0.8148]| 5 [a1+22) exp (0)

thus, Al+4Z=1 zg(1)
~72975000000-A1 exp |- 22" |+ 10000+|20370000 |- 22 51n [m +a3 cos | 2221t || 3647500 Bz cos |22 b ta
10000 2500 2500 2500
250000000000
(-72975000000-21+10000-(20370000-23+3647500-22]] exp (0)
250000000000
Using: _ 72875000000 _ o ..o 10000'(20370000)=0.3143 100003647500 _ o ., .o
250000000000 250000000000 250000000000
Thus,
~0.2919 A1+0.1459 A2+0.8148 A3=-2 T
Eg(z)
21301202500-A1-exp |- 222 E |, 10000-[—1659?'5?6-[B2-c03 20371t +;,3-3:_—u[‘f'3i +2871983:|-R2.3:in [% +
10000 2500 2500 2500
(10000:(-16597476-22+2271983-A3)+1453-(20370000-A3+ 3647500 A2)+ 21301402500 A1) exp (0)
250000000000
21301402500 . 10000/-16597476 . 100002971983 2
E: 2 lologsa c [) 1459:3647500 _ o, c (2]+H 20370000 _ . ..o
250000000000 250000000000 250000000000 250000000000 250000000000
Thus, 0.0852A1+-0.6426 A2+0.119 A3=3 Eg(3)
The resulting equations can be summarized as follows:
In summary: L
Al+a2=1
-0.29195'A1+0.1459'A24+0.8148 A3=-2
0.0852 21+[-0.6426) 22+0.119-23=3
This =system of 3 linear eguation can be Wwritten as:
1 1 4] Al 1
—0.291% 0.145% 0.8148| |AZ|=[—-2
0.0852 —-0.6426 0.119 A3 3
The szolution is found by using the inverse matrix, function "invert™
1 1 o 0.8385 —-0.1845 1.283
Rinvi=invert|[—0.291% 0.1459 0.8148 Binv=|0.1615 ©0.1845 -—-1.263
0.0852 —0.6426 0.118 0.2715 1.1282 0.67386
1
)) i 4.9968 4
Asol=Ainv'| -2 A
o As30l=(—-32.5566
0.0511

page 43 © Gilberto E. Urroz, May 2010

Thu=, the =2olution iz a= zhown below. Al=so, a graph of y(x) iz included:

vlx)=4.9966 exp(-0.2918 x)+exp(0.1459-x)([- 3. 9966) - cos [0.8148 x]+0.0511 5in(0.31423 x|

v (x)
And, since we are dealing with matrices already, we introduce their use in SMath Studio

next.

Operations with matrices
The functions available under the /nsert > Function menu under the heading Matrix and
vector can be roughly classified into the following categories:

e Creating matrices: augment, diag, identity, mat, matrix, stack
e Extracting rows, columns, elements: col, el, row, submatrix, vminor, minor
] Characterizing matrices: cols, det, length, max, min, norm1, norme, normi, rank, rows, tr
e Sorting functions: csort, reverse, rsort, sort
e Matrix operations: alg, invert, transpose
Some of these functions are also available in the Matrices |y g
palette: @ [W7 AR ME W

(1) Matrix 3x3 (Ctrl+M) (mar) M@ © @

(2) Determinant (der)

(3) Matrix transpose (Ctrl+1) (transpose)
(4) Algebraic addition to matrix (alg)

(5) Minor (minor)

(6) Cross product

The only function from the Matrices palette not available from the Insert > Function >
Matrix and vector functions is (6) Cross product, which applies to two vectors of three
elements.

It is important to indicate that even though you can form row vectors, many of the matrix
and vector functions defined in SMath Studio apply only to column vectors. Thus,
column vectors are considered true vectors for the purpose of matrix operations in SMath
Studio. For example, to calculate a cross-product you will need two column vectors of
three elements. Dot products, on the other hand, can be performed on column vectors of
any length. The dot product of two column vectors is calculated as the matrix product of
the transpose of one of the vectors times the second vector. Examples of matrix and
vector operations follow. The vector and matrix names used in the examples suggest the
dimensions of the vector or matrix. For example, u2x1 suggest the vector U,.;, and A3x3
suggests the matrix A.;.

page 44 © Gilberto E. Urroz, May 2010

Examples of matrix creation:

3 1 0 -2 3 2

uZxli=
l] u3ixl:=|-3 v3xl=|-1 R3x3=|0 1 -5
2 -5 -3 5 2

Matrix creation examples:

M3:=augment [u3xl , A3x3) 1 -23 2
M3=[-3 0 1-5
2 -35 2
Ml=diag|uZxl 320
g (u2z1) M1=
01
M2i=diag(v3xl) oo o
Mz=[o -1 0
D0 -5
I3x3=identity[3) 100
I3x3=0 10
001
MO=matzrix (3, 3 000
MO=[0 0 ©
000D

Examples of extracting rows, columns, or elements from matrices:

vecOli=col [A3x3, 2] 3
vecll=|1
5
®i=R3xI x=1
& &

?ECOZ:=IDW(A3K3 ,3]
MM1:=submatrix [A3x3 , 2, 3

r

Function "vminor™:

MMZ=M , [23x3) -2 2
22 MMZ = N
-3 2
Function "minor™:
MMin=M _ _ [R3x3] MMin=2
o

page 45 © Gilberto E. Urroz, May 2010

Examples of matrix characterization:

-2 3 2
A23x3=0 1 -5
-3 5 2

Characterizing matrices:

cols[a3x3)=3 rows [A3x3)=3
|23x3|=-3 length [A3x3]=9
length [A3x3]=29 max [A3x3]=5
min|[A3x3]=-5 norml [A3x3]=39
norme [A3x3)=¢ normi [A3x3]=10
rank [A3x3)=3 trlasx3)=1

Examples of matrix/vector sorting functions:

-2 3 2 1
L3x3I=| 0 1 -5 uixl=|—3
-3 5 2 2
Sortimg:
-3 5 2 2 -2 3
csort [R3x3, 1)=|-2 3 =z rsort [R3x3, 2]=|-5 0 1
0 1-5% 2 -3 5
-3 5 2 2
IETJEI§E[A3K3]= 0 1-5 IE'-.FEISE(LJEKJ.]= -3
-2 3 2 1
-3

s0rt [u 3x1]= 1
2

page 46 © Gilberto E. Urroz, May 2010

Examples of matrix operations:

-2 3 2z o -1 2 0
A3x3=|0 1 -5 BEix3d=|—-2 8 3 vil=|-1
-3 5 2 4 —4 -8 -5
Matrix operations:
-8 —1.3333 5.6667 -2 2 4
invert (A3x3)=|-5 -0.6667 3.3333 A3x3+B3x3=|-2 8 -2
-1 —-0.3333 0.6667 1 1-6
Function "transpose™:
—-13
-2 0 -3
RIx3I-vixl=| 24
23x3 =3 1 &
—-15
2 -5 2

Examples of vector products:

Vector products:

1 o]
u3xle=|—-3 vixle=|-1
2 -5
T
Dot product: ulixl -=:3x1=(—?]

17
u3xl=v3ixl=| 5
-1

Croszs product:

Ranges and vectors
Function range is used to generate a vector (column vector) with elements equally
spaced. The general form of the range function is as follows:

e range(start, end): shows up in the worksheet as start..end, and produces a vector
whose elements are start, start + 1, start + 2, etc. The last element is the lowest
value smaller than /ast by less than one.

o range(start, end, start+increment): shows up in the worksheet as start,
start+increment .. end, and produces a vectors whose elements are start, start +
increment, start + 2 increment, etc. The last element is the lowest value smaller
than end by less than increment.

page 47 © Gilberto E. Urroz, May 2010

The following examples illustrate the use of function range. The examples are numbered
1 through 7. Immediately below the Example number the range function call that
produces the range is shown. For instance, in Example I, typing the expression
range(0,10) produces the range 0..10, assigned to £.

Example 1 Example 2 Example 3
range(0,10) range(0,20,2) range(l.2,4.4)
k=0 ..10 m=0,2..20 r=1.2..4.4
[u]
I:I - -
2 1.2
l - -
. 4 2.2
2 r= ~
] 3.2
3 -
8 4.2
4
m=|(10
k=| & 1
12
&
14
7
16
a
13
g -
20
10

e Example 1 shows a vector from 0 to /0 with default increment of /.
e Example 2 shows a vector from 0 to 20 with increment of 2.
e Example 3 shows a vector from /.2 to 4.4 with default increment of /.

Example 4 Example & Example 7
range(l.2,4.4,0.5) range(0.5,5,1)
3=1.2,0.5..4.4 wi=0.5,1..5 ti=10,5%..1

0.5 10
==1
1 3
Example & 1.5 8
range(l.2,4.4,2) 2 7
wi=1l.2 ,2..4.4 2.5 &
W= t=
3 5
3.5 4
1.2
1 4 3
&
4.5 2
v=[2.8
5 1
3.6
4.4 +

e Example 4 shows an impossibility since the value of start + increment < start, but
end > start

e Example 5 shows a vector from /.2 to 4.4 in increments of 2
e Example 6 shows a vector from 0.5 to 5 in increments of 0.5
e Example 7 shows a vector from 10 down to 1 in negative increments of -/

page 48 © Gilberto E. Urroz, May 2010

Vectors can be combined linearly to produce other vectors, as illustrated here:

®»=0..5 yi=2 %2432 z=0.8'24+0.T ¥y

0 3 2.1

1 5 4.3

2 7 6.3
x= v= z=

2] 8.7

4 11 10.9

3 13 12.1

The following examples illustrate three different ways to calculate products of vectors of
the same lengths:

1. Product of the vectors produces the scalar (dot) product
Product of a vector transpose with another vector produces the same scalar (dot)
product as the only element of a 1x1 matrix

3. Product of a vector with the transpose of another vector produces a matrix

¥ x=55 ®»y=155
T T
x x=[55) x y=[155]
Do O 0 0 O
012 3 4 5
T oz ¢4 6§ 8 10
x'X =
03 & 9 12 15
D2 8 12 16 20
0 5 10 15 20 25

Individual elements of a vector can be extracted by using the name of the
vector with a sub-index. To enter a sub-index, type the name of the vector
and press the left square bracket key ([). Press the right arrow key [—] a
couple of times to select the indexed variable. Examples:

oM
]
=
tn

[
I

(¥

+

Vectors of the same length can be put together in a matrix through function augment:

o=l LnoLa
[S5 I (Y SO
=1 o La =

EI.Lng'IlEZ'ﬁtl:}I r ¥ 5 Z:|=

11 10.9
13 13.1

L Y R L R e

This can be used to build tables of data.

page 49 © Gilberto E. Urroz, May 2010

for loops and parametric plots

A parametric plot is defined by points (x(¢), y(¢)), where ¢ is referred to as the parameter.
In this example we generate data (x,y) and (y,x) using for loops, and plotting the resulting
matrices.

First create column vectors x and v with 21 elements:

xi=matrix [21 . 1] n:=length [x] n=2Z1 yi=x

Use a "for"™ loop to generate parametric data in x,v:

for k=l..n

- :=3-3‘_n[k-i] Note: in this program we use
k 10 the "for™ and the "line™ commands
o from the "Frogramming™ palette.
y =4.cos|k —
eevees e

Form matrices with data points (x,¥) and (yv,x), and
produce a plot of the matrices M1 and M2:

Ml:=augment [x L 1.,-'] MZ:=augment [3-' . x]
5 ¥
3 +
X
M1
M2
Commands in the Programming palette
The Programming palette includes four commands, namely, if, |Progzramming =

while, for, and line. We have presented examples of the |[1if while for Ime
commands if, for, and line, in this document. Here is an
example of the while command:

k=10 bi=0 (initial walues)

while kz5
b=b+k
k=k-1

k=4 b=45 (final walues)

page 50 © Gilberto E. Urroz, May 2010

Introduction to Programming with SMath Studio
In this section we introduce basic concepts of programming for numerical solutions in
SMath Studio.

Programming structures and flowcharts

Programming, in the context of numerical applications, simply means controlling a
computer, o other calculating device, to produce a certain numerical output. In this
context, we recognize three main programming structures, namely, (a) sequential
structures; (b) decision structures; and (c) loop structures. Most numerical calculations
with the aid of computers or other programmable calculating devices (e.g., calculators)
can be accomplished by using one of more of these structures.

The operation of these programming structures will be illustrated by the use of flow
charts. A flow chart is just a graphical representation of the process being programmed.
It charts the flow of the programming process, thus its name. The figure below shows
some of the most commonly used symbols in flowcharts:

” LS <>

startfend process input foutput decision

In a flowcharts, these symbols would be connected by arrows pointing in the direction of
the process flow.

Sequential structures

A complete programming flowchart would have start and end points, and at least one
process block in between. That would constitute the simplest case of a sequential
structure. The following figure shows a sequential structure for the calculation of a sum:

calculate display
C+ a+b c

This flowchart can be simplified slightly by using a single input block to enter both a and

b:
irgat Calculate dizplay
|<5tar‘t ab 7 "c<— a+ b E c ; H: E"d)
Y

Typically, a sequential structure is shown following a vertical direction:

page 51 © Gilberto E. Urroz, May 2010

The sequential structure shown in this flowchart can also be
represented using pseudo-code. Pseudo-code is simply writing the
program process in a manner resembling common language, e.g.,

input
ah

calculate
C+ a+bd

Start
Input a, b
C «a + b?
Display c
End

A flowchart or pseudo-code can be translated into code in different

ways, depending on the programming language used. In SMath

display

Studio, this sequential structure could be translated into the
following commands:

a=2 b=3 S/ Input a.,b
c=a+h ffio<-a+h

c=5 S/ Display c

Here is another example of a sequential structure in SMath Studio showing more than one
calculation step. The sequential structure in SMath Studio doesn't have to follow a strict

vertical direction, as illustrated below.

SEQUENTIAL STRUCTURE:

®x1l=—10 vi=2
X2=25 yvEi=—23
Axi=xmZ-xl Ax=15
Ay=vi-vl Ay=

| z z dl=15.8114
dl=V4x +A4vy

Sequential structure
in a program "line™:

®hi=—10 yvhi=2

]
1

X 3 vEi=—3

Axyi=xR-—xE
A VY= :...'E— :..'3

i &
d2'=VAxx +AVY

d2=15.8114

The line command and the Programming palette
The sequential structure is shown in the right-hand side of the figure above collecting the

calculation steps under a programming line. The figure below illustrate the instructions
to insert a programming line in a SMath Studio worksheet. The line command, together

with other programming commands, is listed in the

Programming palette shown here:

Programming =

if while for line

The algorithmic statement ¢ < a-+b represents the assignment ¢ := a + b in SMath Studio

page 52 © Gilberto E. Urroz, May 2010

The "line"™ command can be entered:
(a) Using "line®™ in the "Programming™ palette
(b} Typing "line("™ in an entry regiomn

T

(1 @ &
The line command produces 2 entry points.
To add more entry points:
{1} Click between the two entry points
{2} Drag down lower right cormner button
{3) A new entry point is added
4dd more entry points as needed

The /ine command can be used to add sequential structures to entry points in other
programming instructions as will be illustrated below.

Decision structure

A decision structure provides for an alternative path to the program process flow based
on whether a logical statement is true or false. As an example of a decision structure,
consider the flowchart for the function listed below:

-

£) ={

lx+1[.if x<-1
x—1Lif x=-1

The flowchart is shown on the right. The
corresponding pseudo-code is shown below:

start
input Xx
if x<|—11lthen . 4
y « |x+
else y o« |- 1] e |+l

y « |x-1]
display X,y
end display
sy

1
In SMath Studio a decision structure is entered g)
using the if command. Instructions on entering the e

if command are shown below:

page 53 © Gilberto E. Urroz, May 2010

The "if" command can be entered:
(1) Using "if"™ in the "Programming™ palette
(2) Typing "if(condition, true, false)"

Using "if"™ in the "Programming™ palette gl=ze
produces these entry forms in the structure: 1

To illustrate the use of the if command within SMath Studio, we enter (x)=2z x<1

. x+1
the function f{x), defined above, as shown here: » —» —» —» — —] _LE |

. . . x—1
Logical statements and logical operations | |

Decision structures require a condition to trigger a decision on the program flow. Such
condition is represented by a logical statement. Within the context of programming
numerical calculations, a logical statement is a mathematical statement that can be either
true or false, e.g., 3>2, 5<2, etc. In SMath Studio the logical outcomes true and false are
represented by the integer values / and 0, respectively.

The following figure illustrates examples of logical statements. It also includes examples
of the four logical operations: (1) negation (not —); (2) conjunction (and A); (3)
disjunction (or v); and, (4) exclusive or (xor ®). The figure also includes the truth tables

for these four operations. A truth table is a table showing the outcome of all possible
combinations of #rue and false statements.

Logical statements (use symbols in the "Boolean™ palette):
J/inequalities
Truth tables:

3x2=1 // true 3<2=0 _ . i
. L. . //HMegation (not): //Conjunction (and):
//Boolean egquality & non-eguality:
_ ol=0
3=2=0 [/ false Ixz=1 i/ true - 1A41=1
= =
R . 1A0=0
Lezss-than-or-egual & Greater-than-or-esgual:
0ALl=0
S5zon=1 S/ true 5xm=0 f/ false 0AD=0
Logical operations: f/Disjunction {(or): //Exclusive or (xor):
// nmegation (not): a[3»z2]=0 1vi=1 1®ml=0
// conjunction (and): (3»2)A(2=3)=1 1yo=1 1®m0=1
// dijunction (or) : [2=2]y(s=2)=1 oyil=1 o@ml=1
// exclusive or (mor): [3<z)@(2>1)=1 owo=0 Q@mo=0

The symbols for the comparison operators (=, <,>, <, >, #) and

Boolean =
logical operations (—, A, v, ®) are available in the Boolean = « » & » &

palette shown here: - oA v B

Notice the presence of the Boolean equal (bold =) which represents a comparison, rather
than an evaluation. The Boolean equal sign can be used to define equations in SMath
Studio, e.g., in this solve command:

solve|sin [x]:x—% , X[=1.0658

page 54 © Gilberto E. Urroz, May 2010

Examples of if statements used to define functions
The following figure illustrates other examples of if statements used in the definitions of
functions:

Decizion structures applied to definition of functions:

— £(2)=2
else f[13)=5
o B+ x

glx, v)

Nested if statements
Decision structures, i.e., if statements, can be nested as illustrated below:

/S /Hested "if" statements:

3[x,ﬂ=ifx}ﬂ 3[2,ﬂ=2
if y>0
j ey s(z2,-2)=1.4142
plae sl-z,-2]=2.8284 1
42 E+Y
else

Irx+y

Combination of if statements with /ine statements

The following two examples illustrate an if statement that exchanges the values of two
variables x and y if x<y, or changes the signs of both variables otherwise. In the first
case, x<y, thus, the values get exchanged:

case [(a): x«<y, eXchange X and y:
xi=3 yi=4
if x=vw
tempi=x
Hi=y
v i=temp
el=e
Xi=—ZXx
Vi=—y
x=4 vy=3

page 55 © Gilberto E. Urroz, May 2010

In the second case, x<y, thus the else clause is activated and both x and y have their signs
changed:

caze(b): x>y, change =signz of x and y:

Xi=4 yvi=3

if =x=v
Li=x
Xi=v
vi=t

el=e
Hi=—X
¥i=—¥

X=—4% y=—3
Loop structures
In a loop structure the process flow is repeated a finite number of times before being send
out of the loop. The middle part of the flowchart to the right illustrates a loop structure.
The flowchart shown represents the calculation of a sum, namely,

<l
S,=2.— .
- ()
The sum S, is initialized as S, « 0, and an index, %, is
initialized as k «— 0 before the control is passed on to the
loop. The loop starts incrementing k and then it checks if the ﬂ

index k is larger than its maximum value n. The sum is
incremented within the loop, S, < S, + 1/k, and the process is
repeated until the condition k>n is satisfied. After the
condition in the decision block is satisfied (7' = true), the ¢

control is sent out of the loop to the display block. e
“k+
),
In terms of programming statements, there are two possible
commands in SMath Studio to produce a loop: while and for. T
The pseudo-code for a while loop interpreting the flowchart to @
the right is shown below: F
start
input n 1
Sh« O S it &
k «0
do while ~(k>n) B
k « k +1
Snh «Sn + 1/k
end loop display
display n, Sn n Sy
end

Since a while loop checks the condition at the top of the loop,
the condition was converted to ~ (k > n), i.e.,
not(k>n) =k <n.

page 56 © Gilberto E. Urroz, May 2010

The while command in SMath Studio

S /The "while™ command can be entered by using:
(1) Using "while™ in the "Programming™ palette while &
(2) Typing "while (condition,body) "™]

The exprezsszsion defining the "condition™ must be modified

within the "while™ loop 2o that an exit can be provided.

The pseudo-code listed above is translated as follows in SMath Studio:

n=20 k=1 3Sn=0
while —(k>n)

Srn:=Sr:+i
k
k=k+1
Sn=3.5977

This summation can also be calculated using SMath Studio's summation command:
20

3

E=1

1

=3.5877

Here is another example of a while loop in SMath Studio:

S /Example: adding even numhers from 2 to 20
500:=0 S/fInitialize sum (500)

k=2 S /Initialize index (k)

while k=20
500=500+k S /"while™ loop
k=k+2

k=22 500=110

S/ This operation can be accomplished using a summation:
Si= Z (2]
5=110

While loops can be nested as illustrated in the left-hand side of the figure shown below.
The corresponding double summation is shown on the right-hand side of the figure
below.

page 57 © Gilberto E. Urroz, May 2010

S/ Nezted "while" loopa:

501=0 k=1 J=1

+
while k<5
3=1
while j =5 5
S01=501+k 3 S05= Z Z (k3] sos=225
J=3+1 k=11i=1
kE=k+1
S01=225

The figure to the right shows an alternative flowchart for calculating the summation:

n 1
S, =2,
=L

The hexagonal symbol in the flowchart shows three
elements: (1) the initialization of the index, k < I; (2) the
index being incremented,

k < k + I; and, (3) the condition checked to exit the loop,

> n. This hexagonal symbol represents the for command

this summation.

A more general symbol for a for command is shown
below. This symbol shows a for loop with index &,
starting at value %, and ending at value k; with
increment Ak:

' k(—ku Eb
ke |
+ bk

loop
statements

&

dizplay
nSn

The index, therefore, takes values k = k, ky+Ak, ky+2Ak, ..., ke, such that k., < k; within

one Ak.

page 58

© Gilberto E. Urroz, May 2010

The for and range commands in SMath Studio

J/The "for" command can be entered by using: - .
(1) Using "for™ in the "Programming™ palette D: =
(2) Typing "for(index,range,body)] "

The for command in SMath Studio uses a range of values to indicate the values that the

index k takes to complete the loop.
Using ranges:

Ranges are needed for the "for" statement.

A range represzents a vector whose elements follow a certain pattern.
Ranges can be entered as:

(1) range|=tart,end) become=s: =tart..end (increment = 1}

(2) range(=tart,end,=start+increment) becomes: =ztart, =start+increment..end

A range represzents a column vector. Below,

Wwe use transposed vectors to
zshow ranges as row vectors:

//Examples of ranges with increment of 1:
S /Type "range (2,5)" to produce:

ri=2 ..5% T
rl1 =(2 3 4 5)

S /Type "range (10,18)" to produce:
r2=10..18 T

r2 =(10 11 12 13 14 15 16 17 18)

/J/ Examples of ranges with positive increment:
S/ Type "range (2,18,4)"™ to produce:

r3=2,4..18 T
r3 =(2 4 6 8 10 12 14 16 18)

/S Type "range (20, 300,80)" to produce:

r4=20,80..300 T
r4 =(20 80 140 200 260)

/f Examples of rangez with negative increment:
JSf Type "range (100,20,80)" to produce:

r5:=100, 80..20 T
r5 =[100 20 €0 40 20)

Sf Type "range (5,1,4)™ to produce:

ré=5,42..1 IET=(5 432 1)

page 59 © Gilberto E. Urroz, May 2010

Here is an example of the for command in SMath Studio using the range /..10:

S/ Example sum of even numbers uzing "for™:
503:=0 S/ imitialize a sum (S03)

for k=1 ..10 JS/"for"™ loop, enter the range as:
S03:=503+2'k //'range(l,10)"*

503=110 S/ final wvalue of 503

The double summation programmed earlier using while loops, can be programmed also
using for loops:

S F WNested "for" loops:

504=10

for jel1..5
for k=1..5
S504:=504+k'j

504=225

A programming example using sequential, decision, and loop structures

This example illustrates a program in SMath Studio that uses all three programming
structures. This is the classic “bubble” sort algorithm in which, given a vector of values,
the smallest (“lighter”) value bubbles up to the top. The program shown uses a row
vector 7S, and refers to its elements using sub-indices, e.g., Sy, etc. The example shows
how to enter sub-indices. The output from the program is the sorted vector rS.

page 60 © Gilberto E. Urroz, May 2010

S/ Example using "for"™ and "if": Classical bubble sort
rs=[5.24 1.2 3.5 10.2 -2.5 4.1] // Given a vector "rS"
n5:i=1ength [IS] ns==8 J/ First, find length of vector

S/ Double loop that re-arranges

Tor e 1. ma=1 JJ/ order of elements in vector rS

for j=k+1 ..03

if 5, #5575 // To enter sub-indicesz use,

tempi=rS. . /f for example, r5[1,k
1j

e R R "
ISl k:=temp

el=e
4]

rs=(-2.5 1.2 3.5 2.1 5.4 10.2) // Result: vector sorted

S/ This sorting can be accomplizhed using function "sort":

rT=[(5.4 1.2 3.5 10.2 —-2.5 4.1]

|
[]
n

T
SDIE[IT]=

L4 BY R U
s = Ln RO

Many programming applications, such as the one shown above, use vectors and matrices.
Luckily, SMath Studio already includes a good number of functions that apply to
matrices, €.g,:

e Creating matrices: augment, diag, identity, mat, matrix, stack

e Extracting rows, columns, elements: col, el, row, submatrix, vminor, minor

e Characterizing matrices: cols, det, length, max, min, norml, norme, normi, rank,
rows, tr

e Sorting functions: csort, reverse, rsort, sort

e Matrix operations: alg, invert, transpose

. . . . Matrices =
Some of these functions are also available in the Matrices G [a] o7 AF M2 W

palette: -
(1) Matrix 3x3 (Ctrl+M) (mat)
(2) Determinant (det)
(3) Matrix transpose (Ctrl+1) (transpose)
(4) Algebraic addition to matrix (alg)
(5) Minor (minor)
(6) Cross product

(1 2} (3} (4) (5) (8)

Examples of matrix operations were presented earlier.

page 61 © Gilberto E. Urroz, May 2010

Steps in programming
The following are recommended steps to produce efficient programs:

(1) Clearly define problem being solved
(2) Define inputs and outputs of the program
3) Design the algorithm using flowcharts or pseudo-code
4) Program algorithm in a programming language
(e.g., SMath Studio programming commands)
(%) Test code with a set of known values

Errors in programming
Typically there are three main types of errors in developing a program:

1) Syntax errors: when the command doesn't follow the programming language
syntax. These are easy to detect as the program itself will let you know of the syntax
violations.

(2) Run-time errors: errors due to mathematical inconsistencies, e.g., division by
zero. These may be detected by the program also.

3) Logical errors: these are errors in the algorithm itself. These are more difficult to
detect, thus the need to test your programs with known values. Check every step of your
algorithm to make sure that it is doing what you intend to do.

Notes: Appendices 3 through 6 show examples of programs used to solve selected
problems in numerical methods, namely:

Appendix 3 - The Newton-Raphson for solving equations

Appendix 4 - The 4th-order Runge-Kutta method for a single ODE
Appendix 5 - The 4th-order Runge-Kutta method for a system of ODEs
Appendix 6 - The 4th-order Runge-Kutta method for a 2nd order ODE
Appendix 7 — Finding eigenvalues and eigenvectors of a matrix

Input/Output of data and file manipulation in SMath Studio

SMath Studio provides functions wfile, rfile, and dfile for output into a file, input from a
file, and deleting an existing file. To illustrate the use of these functions we could start
by writing some data to a file and exploring the contents of the file. Before we do that,
however, I want to address an issue related to the location of the SMath Studio
installation folder.

The location of the SMath Studio installation folder

When I first attempted to use I/O functions’ after installing SMath Studio in my Windows
Vista Ultimate 64-bit machine I kept getting a message indicating that access to the file
location was not permitted. This was so because SMath Studio, by default, sends output

page 62 © Gilberto E. Urroz, May 2010

to and reads input from the folder /*SMath Studio Installation Folder*/user/. In my
computer, the *SMath Studio Installation Folder* corresponds to the directory
C:\Program Files(x86)\SMath\SMath Studio\ and it requires Administrator access to
modify its contents. To be able to write data from and read data into SMath Studio,
therefore, I copied the folder C:\Program Files(x86)\SMath| to a different location. In
my case the location chosen was:

C:\Users\Gilberto E. Urroz\Documents\NUMERICAL APPLICATIONS\SMath

In your computer it could be any location where you don't need Administrator rights to
modify content. I then proceeded to create the folder user, where the data files would
reside. Thus, the full address of this new folder, in my case, is:

C:\Users\Gilberto E. Urroz\Documents\NUMERICAL APPLICATIONS\SMath\SMath
Studio\user

To facilitate access to the program, at this point, I created a new shortcut to SMath Studio
in my desktop. Now we proceed to illustrate the use of the wfile command.

Writing data to a file
You can use function wfile to write a single item of data into a file. Consider the
following examples’:

a=2.5
wfile [a . fi;EC':I_:l=_'I_ Stores the letter '"a' in file "fileQl"
wfile [2 5, fiLeOZ]:l Stores the value "2.5" in file "file02"

You can open the files using, for example, Notepad in a Windows system to check the
contents of the file:

Name} Date modified Type Size Tags
|| fileQ1 9/25/2009 7:46 AM File 1 KB
|| fileD2 9/25/2009 T:46 AM File 1KB

") file01 - Notepad =& =]

File Edit Format View Help |

a

| file02 - Notepad L= | D

| File Edit Format View Help |

2.5 -

’ recommend you use only lowercase letters in the filenames used to store data. I had difficulties getting
SMath Studio to read data out of files with uppercase letters in their names.

page 63 © Gilberto E. Urroz, May 2010

Thus, you'll need to use the numerical result that you want to write out to a file as the first
argument of wfile. Using the reference to a variable will only write the variable name.
The second argument to wfile is the name of the file, entered without quotes. The file
name can only use letters and numbers. No other characters are allowed in the name of a
file.

You can store a range or the resulting vector to a file, e.g.,

Two ways Lo write a range to a file:

(1) A= a range (2) A= a vector
Zi=2 ,4 ..15% 2 2
4 4
a &
wfile[2z , 4 ..18, £ile03]=1
a a
2=|10 wiile|(|{10]|, filef4(=1
12 1z
14 14
16 1a
14 18

The contents of the corresponding files are shown below:

Nar‘ne! — if Size Tags
[filed1 3| file03 - ... | 1T
| |file02 File Edit Format Wiew 1KE
|| file03 Help 1 KE
|| fileDd range (2,19,4) - 1KB
| file4 - Notepad (= | E |

\—f | File Edit Format View Help |
mat (2,4,6,8,10,12,14,16,18,9,1) =

Regarding the notation mat(2,4,6,10,12,14,16,18,9,1) written in file file(4: this
specification contains the 9 elements of the vector shown as s, above, plus the number of
rows (9) and columns (/) defining the vector. Consider, for example, the writing of
matrices to files. In the following two examples, the two matrices have 12 elements,
each, but arranged differently. Matrix A has 3 rows and 4 columns, while matrix B has 3
rows and four columns. They get stored into files file05 and file06, respectively, as
shown below:

page 64 © Gilberto E. Urroz, May 2010

Writing a matrix to a file:
i1 2 3 4 1 2 3 4

Ai=|5 & 7 a wfile||E & 7 8|, £iled3|=1
9 10 11 12 9 10 11 12
i 2 3 i Z2

= 4 5 & . 4 5 & |

=l a o wfile 7 L o |* fileOe|=1

10 11 12 10 11 12

Next, we show the contents of the two files. Notice the specification of rows and
columns as the last two values in the list of data:

Name [3 fle05 - Notepad l=@] =]
f?le(]l File Edit Format View Help

:::ii mat (1,2,3,4,5,6,7,8,9,10,11,12,3,4)

_Jfile04 | 7| il - Notepad SULCL_X__

LIfIE05] [Eie Edit Format View Help

LIfile08 [t (1,2,3,4,5,6,7,8,9,10,11,12, 4, 3) =

Here is another example of using function wfile:

Another example of writing a matrix:

T 1 2 3 4 14710
C=augment |& , B
C=|5 & 7 8 258 11
9 10 1112 2 6 9 12
1 2 24 14710
wfilef|5 & 7 8 2 5 8 11, £iled7(=1
8 10 11 12 3 6 9 12
The contents of the file are:
| £ile07 - Notepad e - = |] S

| File Edit Format View Help |
mat(l,2,3,4,1,4,7,10,5,6,7,8,2

so,8,11,9,10,11,12,3,6,9,12,3,8 B

Reading data from a file

To read data from a file use function rfile. The following examples use the files we
created above (i.e., file01, file02, ..., file07) to illustrate the use of function rfile. The
result from reading data can be simply shown by using an equal sign(=), or assigned to a
variable by using the assignment operator (:=). Try the following examples:

page 65 © Gilberto E. Urroz, May 2010

Reading files:

rfile(file02]=2.5

rfile(file02]s2
“

Reading files:

a=rfile[filenz]

(1) Showing result only:

U=ze after command

Usze Crtl+. (symbolic)

(2]

Assigning to a variable:

[5%)

Additional examples of reading from a file are shown below:

Ri=rfile[£il=06) 12 3 B=rfile(£ilens) 1z 3 4
a|® 5 8 E=|5 & 7 &8
7 8 9 9 10 11 12
10 11 12 j
A
4
&
8
12 3 414710 rfile(filen3)=|10
rfile(fileoi]=|5 6 7 8 2 58 11 1z
91011123 6 @ 12 14
16
18

If you attempt to read from a non-

existing file you'll get an error message:

rfile|[filelE]=1n
| (zz1=0g)-1]

Could not find file "C:\Users\Gilberi
E. Urroz\Documents\NUMERICAL_APPLICATIONS\SMath\SMath
Studic\userifilelg’.

Copying a matrix from a spreadsheet

Suppose you have the following 3x3 matrix (only the numbers, no labels, etc.) in an

OpenOffice.org Calc spreadsheet

named myMatrix.ods:

[E MyMatrix.ods - OpenOffice.org Calc @Elﬂ_hj
File Edit View Insert Format Tools Data Window He|
BB [FEsa wE 2
B Arial |0 [=] & 4
E8 =] 0 2 =
- B | C | D | -
1 34 4.2 51]
2 7.8 -1.2 2.5 m
3 6.4 3.8 1.3
4 -
410)01 Sheet1 (Sheetz 73] « [l
Sheetl /3 || Default STD

page 66 © Gilberto E. Urroz, May 2010

Save the file in csv (comma-separated values) format into your user folder in your SMath

Studio installation:

[@ Save As

-
i

N |

SIA

, <« SMath » SMath Studio » user

- | 3 | | Search

* Browse Folders

File name:

ryMatrix.csv

Save as type: [Text C5V (ioswv) (*.csv)

Auto Extension

Password

[Filter Options

[Save] [Cancel]

Then, close the newly saved file myMatrix.csv, and open it using Notepad (right-click on
the icon, and select Open with ...):

E24] MyMat rpe e

Q/25/2000 Q-A2 ARA

& My Matri

oy

Open
Print
Edit

Convert to Adobe PDF
Convert to Adobe PDF and EMail

Open With
Share...
Scan for threats...

Restore previous versions

to see the contents of the file:

Micrnenft Office E... 1KB
ument 5... 8 KB
3 ﬁ;‘ Microsoft Office Excel
Mj MNotepad
scalc.exe
=l WordPad
Choose Default Program...

r

N:l rmyhatrixcsy - Motepad

File

Edit

Format View Help

Copy the file contents into another text file, let's call it mymatrixfile’, and edit it to read:

A few notes: (1) Use only lowercase letters in the name of the file. I couldn't get SMath Studio to

recognize filenames that include uppercase letters. (2) Make sure the filename to be read has no extension,
therefore, the file should be named, in this case, mymatrixfile, and not mymatrixfile.txt or mymatrixfile.dat,
etc. (3) Do not try to simply use the same .csv file without an extension as your input file to SMath Studio.
It won't work. You need to create a new file.

page 67

© Gilberto E. Urroz, May 2010

Mj rymatrixfile.td - Motepad RGN X

| File Edit Format View Help |
mat(3.4,4.2,5.1,7.8,-1.2,2.5,6.4,3.8,1.3,3,3) a

b

Thus, the editing consisted in:

adding “mat(* at the beginning of the line

placing all the data into a single line

replacing the missing commas (between 5.1 and 7.8, and between 2.5 and 6.4)
adding “3,3)” at the end of the line.

b s

Save this file and then try the command:

3.4 4.2 5.1
rfile (mymatrixfile|=[7.2 —1.2 2.5
§.4 3.2 1.3

Of course, to get this simple 3x3 matrix into SMath Studio it will be easier to type it in
into the worksheet. The procedure illustrated above would be more practical for very
large spreadsheet data sets.

Writing and reading symbolic expressions
The following examples illustrate the writing of expressions to a file, and the reading of
the same expressions from files.

Writing and reading svmbolic expressions:

Example 1: Example 2:
Writing to a file: Writing to a file:
5
! p o AN
wfile [.-u'.c. +tan =l f'__elr:l]=l wfile I 1 —dx, filell|=1
pl+x “
Two ways of reading from the file: Two wayz of reading from the file:
rfile (£filel0]=1.9916 rfile(£ilell1]=1.373¢
A2 43 +1 1 .- 68670038346567
il il i e it e rfile|filell]|>
rfile(filelo)s = ()> $6000000000000

The contents of the files are shown below:

page 68 © Gilberto E. Urroz, May 2010

) file10 - Notepad (=@ 3) 3 file11 - Notepad EER
| File Edit Format View Help |
“int(l,-"{l+x"2},x,0,5] »

File Edit Format View Help

sgrt (2)+tan(o/f6)

The following example shows writing and reading of a matrix of symbolic expressions:

Writing a matrix of symbolic expressions to a file:

..,ff?+ '_::.|:2:] gin

wfile
14328 '-Dgz[ﬁ]

Reading the file with a matrix of aymbolic exprezsions:

4252 T.5768

rfile (f"—'-Elz]=[.2423 0.7925

[FR o

H+;n[2] e 4+3in
1+34|'E|-11 ‘-"‘[Ti:l

o

]
>
+

J

rfile(filelz]>

The content of the file 1s shown below:

| file12 - Notepad) = S o]

| File Edit Format View Help

mat (2grt(3)+1n(2),2in(no/5)+e"2, 1/o+nthroot (25, 3) , log(3grti(3),2),2,2) =

Deleting files
Use function dfile(filename) to delete files in the folder /*SMath Studio Installation

Folder*/user. Examples:
Deleting file:

dfile(filenl]=1 dfile(filenz]=0

The directory /*SMath Studio Installation Folder*/user is shown below before and after
the execution of the dfile commands shown above:

page 69 © Gilberto E. Urroz, May 2010

Name

|| file0l
|| file2

[| fil=03
|| fileDd4

[| fil=05
|| fileQ&
|| fileD7
|| file09

| file09 bt
|| fileld

[|filell
|| MyFile0l
£55) MyMat...
EM}rMat...
| mymat...

Date modified
9/25/2009 7:51 AM
9/25/2000 T7:46 AM
9/25/2009 7:56 AM
9/25/2009 7:56 AM
9/25/2000 8:08 AM
9/25/2000 8:08 AM
9/25/2009 8:17 AM
9/25/2009 8:53 AM
9/25/2009 9:01 AM
9/25/2009 10:10 AM
9/25/200910:11 AM
9/25/2009 9:59 AM
9/25/2000 942 AM
9/25/2009 8:35 AM
9/25/2009 9:49 AM

Type Size
File

File

File

File

File

File

File

File

Text Docu...
File

File

File
Microsoft ...
OpenDocu...

File
Before

1|

1)

F

T T T S S T Wy g wry

Name!

|| fileD3
|| fileDd
|| fileD5
|| fileDd
|| filed7
|| fileDS

| fileld bt
|| fileld

| [filell
|| MyFilell
E5L] MyMat...
EM}rMat...
| mymat...

Date modified
9/25/2009 7:56 AM
9/25/2009 7:56 AM
9/25/2009 8:08 AM
9/25/2009 8:08 AM
9/25/2009 8:17 AM
9/25/2009 8:53 AM
9/25/2009 9:01 AM
9/25/2009 10:10 AM
9/25/2009 10:11 AM
9/25/2009 9:59 AM
9/25/2009 9:42 AM
9/25/2009 8:35 AM
9/25/2009 9:49 AM

Type Size
File

File

File

File

File

File

Text Docu...
File

File

File
Microsoft ...
OpenDocu...
File

After |,

€|

1)

Application of functions wfile, rfile, and dfile could be useful in programming if there is a
need to store data temporarily in a file.

page 70

© Gilberto E. Urroz, May 2010

T N T S T Wy gy wry

APPENDIX 1 - Examples of two- and three-dimensional graphics in Smath Studio

Plotting a single function of x:

12

Yy

Changing the size of the graph window:

1 - Click on point in your worksheet
where upper left corner of graph
will go

2 - Click on the "2D" option in the

"Functions" palette or use the

"Insert > Graph > 2D" menu option
3 - Type the function name in the

placeholder below the graph

In this example we plot the
function: £ (x) = sin(x)

Click on the graph window, then drag one of the three
black handlers in the graph window to adjust its size

64 Y

Yy

sin(x)

Moving the axes about the graph window:

Yy

-4

-24 — {:. ,‘

sin(x)

1 - Click on the "Move" option in the "Plot" palette
2 - Click on the graph window and drag the mouse in the direction where you want

to move the axes.

Scaling (zooming) the graph:

12 y
Q

4

x
-4
=2 - 1 2

sin(x)

To zoom the x-axis only: —-————>

1 - Click on "Scale" in the "Plot" palette

2 - Click on the graph window
3 - Hold down the "Control" key
4 - Roll the mouse wheel up or down

<--- To zoom the x-axis only:

1 -

2
3 -
4

Click on "Scale" in the "Plot" palette
- Click on the graph window
Hold down the "Shift" key
Roll the mouse wheel up or down

Yy
b4
- - 8 16
sin(x)
<--- You can zoom both axes by zooming one
axis at a time. In this case, I zoomed

the x axis first, and then the y axis.

Note: Use the "Refresh" option in the "Plot" menu

to recover the original version of any plot.

Plotting various functions simultaneously:

L Y 1 - create a 2D graph

2 - click on the function placeholder
(lower left corner) to select it

3 - click on the "Equation System"

4 option in the "Functions" palette
to produce a minimum of two

[e¢)

XN 2O N N N XN . -
RO YR Y NS NS NS A function entries .
4 - Type the two functions to be plotted

Note: the first function listed is plotted
using a blue line, the second one

-8 uses a red line
|-16 -8 0 8 16
sin(x)
cos(x)
y 1 - To add more than two functions to plot,
2 use the "Equation System" option in the

"Functions" palette as above
2 - Click on the "Equation System" cell,
1 and drag down corner of cell adding as
many placeholders as you want.
3 - Type the functions to be plotted, one at
0 a time, clicking outside of the graph after
you enter each one of them (this will allow
you to see each function plota as they
-1 are added to the graph)

Notes:
-2, 5 . . : 5 3 1 - As you add functions to plot, SMath Studio
) uses the following colors for the plots:
sin(x)
cos (x] 1 - blue 2 - red
2-sin (2 x) 3 - black 4 - magenta, etc.
X
cos E] 2 - In this example the graph has been zoomed
using the approach described above
Plotting a function using vectors: Vectors of x and y data are created using ranges,
example:
Xi==1I ,—n+% LI Create x vector as follows

Type: X : range - p cntl-G, p cntl-G,
- p cntl-G + p cntl-G / 20

n:=length (x)

n= 41 Calculate the length of vector = n

Fill out y vector using a for loop. Click "for"
for kel..n in the "Programming" palette, then use:
2 range 1 , n
yk:=31n[x k] +31n[2-xk]
Use sub-indices, e.g., v [k ... etc.

M:= augment(x , y) Form augmented matrix M with vectors x and vy,
place M in graph as a function name:

< --- The graph was zoomed in and the axes
1 moved by using the following procedures:

7 1 - To zoom x-axis only: click on "Scale" in
0.5 the "Plot" palette, hold the "Control" key,
and use the mouse wheel

2 - To zoom y-axis only: click on "Scale" in
the "Plot" paletted, hold the "Shift" key
and use the mouse wheel

3 - To move axes, drag mouse across graph window

Using points or lines for a plot:

Using the sparse data in matrix M we reproduce
the graph above, but then we selected the
"Graph by points" option in the "Plot" palette
to produce the graph shown to the left.

! ' ' You can click the option "Graph by lines"
option in the "Plot" palette to return to
0.5 | . . . the default graph format of continuous lines.

Matrices can be used for plotting parametric plots:

I
t=-1 ,—n+% .. I Define the vector of the parameter t

ni=length (t) Determine length of vector t = n

for kel ..n

) Calculate vectors of x = x(t) and
= 31n[3- t k]

® y = y(t)

k
y k:=2-cos[2- t k]

Produce matrix of (x,y) and plot it
M:= augment (x , y)

2 - Using "Plot by Lines" option
in the "Plot" palette

1 - Using "Plot by Lines" option
in the "Plot" palette

Polar plots can be produced using vectors and matrices:
R

50 °
n:= length(@)

6:=0, .21 Generate vector of 6 between 0 and 2o

Determine lenght of vector 6

for kel ..n Generate values of r = £(6)

r k:=2-[1+2-sin[e k]]

for kel ..n

_ Generate coordinates:
XX =T k-cos[e k]

=1 _-s81nl|6 X = r cos(9)
Yk k [k] y = r sin (@)

P:= augment(xx, yy) Produce matrix of (x,y) and plot it

P

1 - Using "Plot by Lines" option

in the "Plot" palette

P

2 - Using "Plot by Lines" option

in the "Plot" palette

Using graphs in solving equations:

In this example we seek the solution(s) for the equation

3
x +2-x-5

2
x +1

A solution can be found by determining the intersection of the functions:

x +1 g(x):=x +2:x-5

f(x}

Using graphics and zooming the intersection we estimate the solution to be close to

1.80

X

A

1.776

5 e

3
=x +2'x

2
solvelx +1

The exact solution can be found using:

Three-dimensional graphs - surfaces

X+y

X+y

Use the "Rotate" option in the "Plot" palette

to change the surface view.

Use the option "3D" in the "Functions" palette,

and enter the function f(x,y) in the place-

The result is a 3D surface, in this

holder.

The original plot is shown

case, a plane.

above.

X+

X+

This figure uses the option "Graph by
Points" in the "Plot" palette.

This figure uses the option "Graph by

Lines" in the "Plot" palette (default).

X+ 2"y

X+y

Use the "Move" option in the "Plot" palette

to move the location of the origin in the

graphics window.

Use the "Scale" option in the "Plot" palette,
click on the graph, and drag the mouse over

it to zoom in or out.

is)
O
l
[oN
>
<
©
X
O
S
(@)
-
()
Il
[0}
>
—
()
<
-
o
-
O
O
[}
<
iB)
O
[0}
>
O
O
[0}
S
O
i)
3
&
[0}
&
IB)
O
l
(aF}
[0}
i
i)
c
-
c
O
-
Is)
[oN
O
S
[%)
[O)
|
X
[0}
0%
[0}
i)
iB)
()
(%)
D
()
e
O
=

The following examples use more complex surfaces:

The type of 3D graphs of surfaces produced by SMath Studio are referred to as wireframe plots.

The following examples show more than one surface plot together in 3D:

N
N

SN
»Yg\\\\\\\\
\\\\\\\:\\\

AN 8
';Q\Q::{‘::\\‘:Q:\\ v
QNN
NN
X+
{ y .y
X-y
X-y

X+ 2"y

Drawing a space curve in 3D:

t=0,0.1..10

n:=length (t)
n=101
for kel..n

k:= 31n[t k]

M:= augment (x , Y, z)

sin(x)

sin(y)

A space curve is defined by a matrix of three columns
corresponding to coordinates x, y, and z of the curve.

Create a vector t with values of the parameter that
will produce x = x(t), v = y(t), and z = z(t) .

Determine the length of vector t

Generate vectors x, y, and z using a "for" loop

Build matrix M with coordinates (x,vy, z)

Plot matrix M in a 3D plot

Drawing a surface and a space curve: Use the "Equation System"

option in the "Plot" palette,
and enter the equation of the

surface (e.g., x+ty) and the
matrix that represents the
space curve (e.g., M)

X+y

Plotting 2 space curves:

t=-2,-1.9..2

n:= length(t)
n=40

for kel ..n

x1 k:=l+5-tk

vl ==1+4-t

zl k:=l+8-tk

P:= augment(xl , vl, zl)

In this example two straight lines in 3D are
produced by using linear parametric equations.

Vector t is the parameter, and the coordinates
of the two curves are given by (x1,yl,zl) and
(x2,y2,2z2). These lines are represented by the
matrices P and Q, respectively.

for kel ..n
x2 ., =1+3"t

k k
y2 k:=—l+t K
z2 K= t K

Q= augment(x2 , Y2, 22)

P

Q

Individual plots of curves given by matrices P and Q.

<--- Join plot of
lines given
by matrices
P and Q

Appendix 2 - Examples of 2D geometric figures in SMath Studio

This worksheet illustrates the use of SMath Studio
2D graphs to produce selected regular and irregular
geometric figures.

Straight-line segment:

Given the two points, A and B, representing the
extremes of the straight-line segment, plot the

segment.
* Extreme points: A:= - B:= s
R E |10
* Generate matrix of points:
* Sl m:= S27 "o 1.5
ope: = m=1.
B 1 A 1
* Intercept: b:=A2—m A 1 b=5.5
* Number of points: ni=>5
B2,
* Increment: AX:T Ax=1.6
* x-series: XS:=Z-\1,Z-\1+AX..B1

* y-series:
for kel..n+1

yS = xS Kt b

* Matrix of points: MS:= augment (xS, y9)

* Mid-point:

* Normal slope:

* Normal

* Normal

* Normal x series:

* Normal y-series:

* Matrix

intercept:

increment:

1 -1
M:=—-(A+B =
AL
1
mpPi=—— mP=-0.6667
m
bP:Ddz—nE-Ml_ bP=3.3333
B .- A
2 2
AxP:= AxP=2.4
n
xXP=A A +AxXx..B

272

for kel ..n+1

yPk=n@-xSk+bP

of points (normal) : MP==augment(xS, yﬂ

N

MS
MP

Circle:

Given the center, C,
plot the circle.
* Center: C:= 1;]

* Generate matrix of data:

Ag= 2D
n

for ke O ..n

*Cre1=C1

= C

YCy41=C 5

MC:= augment (XC , yC)

and radius, r, of a circle,

* Radius: r=12.5
n:i=150
AB=0.0419

+r-cos(k-AQ

+r sin (k- 06)

Given the number of sides, n, the center of the circums-
cribed circle, C, and its radius, plot the regular polygon
of n sides. This example shows a regular pentagon.

* Number of sides: n:=>5
3
* Center of polygon: C:=

* Radius of circums- r=12
cribed circle:

* Tnitial angle: 00:=

* Incremental angle: AB:= AB=1.2566

for keO..n

* Generate matrix Pol — . (GO k-Ae)
of points: XEOLpy=C*frcos *

yPol = C

ol o+ 1 sin(60+ k- 46)

MPol:= augment (xPol , yPol)

Calculating the area and perimeter of the regular polygon:

The matrices representing the vertices of a polygon,
whether regular or not, include an extra repetition
of the first vertex:

13.3923 4
0.5051 9.7378
-8.9343 -0.7457
-1.8808-12.9625
11.9177-10.0296
13.3923 4

MPol=

With such a matrix available, the area and perimeter of the
polygon are calculated as follows.

M:= MPo1l

n:=rows (M)- 1 n=>5
Area:=0

Perim= 0

for kel ..n

Areai=eval

1
Area+?[Mkl-Mk+12]] .

Area:=eval

Area—%-[M ke 11 My 2]]

[Mk+11_Mkl]2] -4

d2:=eval

d2:=eval

2
A2+4(My g oMy)]

Perims= eval[Perim+,¢ d2]
Area=|Areq| MPol

Area=342.3803 Perim=70.5342

Enter the (x,y) coordinates of the n polygon vertices in
a nx2 matrix, e.g.,

-5 2
-1 3
0 7
MI=1 1
7 -1
=1=3
=2=5

Typically, the initial point needs to be repeated for
the polygon to be completed. This is accomplished by
using:

T

T T
MN:= augment (MI =~ , row(MI, 1)

-5 2
-1 3
0o 7

8 y MN= L1
7 -1
-1-3
-2-5

4 -5 2

X
-4
- -4 4 ¢

MN

-5 2
As with the case of the -1 3
regular polygon, the 0o 7
matrix representing the 1 1
vertices of the irregular MN=| -
polygon include an extra
repetition of the first -1=3
vertex: -2-5

-5 2

With such a matrix available, the area and perimeter of the
polygon is calculated as follows.

Calculating area and perimeter for MN:

M:= MN

n:i=rows (M)— 1 n="7

Area:=0

Perim= 0

for kel ..n y

1
Areai=eval Area+3-[M

kl'Mk_+12]]

1
Area_?[M el 1 M 2]]

2 0 X
d2:=eval [Mk+l l_Mkl] B)

Areai=eval

2
d2:=eval d2+[Mk+12—Mk2]] -,
Perim=eval [Perim+4 d2] ~6-8 -4 0 4 8
MN

Area:=|Area|

Area=7.5 Perim=38.7516

Appendix 3 - The Newton-Raphsonmethod for solving equations

In this appendix we present examples of the Newton-Raphsonmethod.

1 - The Newton-Raphson for solving single equations:

The Newton-Raphsonmethod used for solving an equation of the form
f(x): 0

requires the knowledge of the derivative f£'(x). This can be easily
accomplished in SMath Studio using the "Derivative" option in the
"Functions" palette:

o ()= —— £ (x

0’ the solution can
be approximated by the iterative calculation:

Given an initial guess of the solution, x=x

for k=0 ,1,

The iteration continues until either the solution converges, i.e.,
|f[x k+ 1]|< € , or a certain large number of iterations are performed
without convergence, i.e., k>n

max

2
Example: Solve the equation: x —-2-x-5=20

Solution: A graph of the function can help us find where the
————————— solutions may be located:

2
Define the function: f(x):=x =2°%=5

Produce a graph of f(x):

The graph shows solutions near x = -2 and x = 3. We can
implement the solution using the Newton-Raphsonmethod
as follows:

fp(x):=— £ (%) fp(x)- 2:(- 1+ x)

-6
Parameters of the solution are: &:=1.0-10 nmax:= 100

First solution:
Starting with a guess of xG=-2.5
we find a solution by using the following iterative procedure:

k=0

while [(ks nmax)/\ﬂ £ (xq)|> s]]

f (%G
xXGpl:= xG—ﬁ
£p(xG)

ki=k+1

xG= xCGpl
xG=-1.4495 This is the solution found
k=4 After this many iterations

-11 , , ,

£f(xG)=2.142710 The function at the solution point

Second solution:
Starting with a guess of xG=4.2
we find a solution by using the following iterative procedure:

k=10

while [(ks nmax)/\ﬂ £ (xG)|> s]]

f(xG
xGpl:= xG—ﬁ
£p(xg)

ki=k+1

xG=xCGpl
xG=3.4495 This is the solution found
k=4 After this many iterations

-13 , . .

£(xG)=2.252910 The function at the solution point

2 - Solution to equations with function "solve":

Most equations can be solved using function "solve" in SMath
Studio. For the present case we'll have:

-1.4495

solve(f(x)=0, x)= 3 4495

Alternatively, you can use:

—1.4495]

2 |
solve |x 2-x 5—O,X—[3'4495

3 - The Newton-Raphsonmethod for a system of equations:

X

fn[x 2..xn]=O

l 4

or simply, f(x)=0, with

1r=z Xn] £1(x)
f(x): f2[xl,x2 'Xn]_ f2.(x)
fn[xl,x2 Xn] fn ()

We can provide an initial guess for the solution, x 0" and

proceed with an iterative process defined by the formula:

for k=0 ,1,... In this formula, J[X k] , 1s the Jacobian
matrix of the function defined as [to be 100% correct the
derivatives in this matrix should be partial derivatives]:

dy1 dy1 dy1

dx1 dx2 dxn
dy2 dy2 dy2
J[Xk]= dx1 dx2 dxn
dyn dyn dyn
dx1 dx2 dxn

How to calculate the Jacobian matrix of a system of three
equations. Given the system of three equations:

X+ X -+ X 3—6 This is obvious, but could
useful for larger functions:

n:=length (f (X))

+ X -14 n=3

The following nested "for" loops calculate the elements of
the jacobian matrix as the elements "jacl[i,j]":

for iel ..n
for jel..n

The following definition creates the function "Jacobi" that
represents the Jacobian matrix of the function f (x) shown
earlier:

Jacobi (x)== jac

Note: This approach for calculating the Jacobian matrix of a vector
function was made available by Radovan Omorjan (omorr) in the SMath
Studio wiki page: http://smath.info/wiki/diff.ashx

The parameters of the solution are: nmax:=100 e=1-10
An initial guess is: xG=|-1

The iterative process for the solution is expressed as:

k= 0
while [(ks nmax)/\(max (£(xq9)> s]]

=1
xGpli= xG- Jacobi (xG) - f(xq)
ki=k+1
xG= xCGpl

A solution is found after these many iterations:

k=12
Here's a solution: And the function at that point:
3 -15
-3.932810
xG=|2 14
1 £(x6)=|_1.0068 10
14

-3.25310

Note: The function representing the system of equations solved
above, namely,

can be thought of representing the system of equations:

x+y+z-6=0 X+y+2z=6

Xy z—6=0 or Xy Z=6

2 2 2 2 2 2

X +y +z -14=0 X +y +z =14

with the variable substitution: x

Appendix 4 - The 4th -order Runge-Kutta method for a single ODE

This worksheet provides two different versions of the 4th-order
Runge-Kutta method for solving a first-order ordinary differential
equation (ODE) of the form:

d
—y=f
dxy (X,Y)

subject to the initial condition: y(xs): ys

The solution will be provided in the range: xs < x < xe

which will be divided into n subintervals to produce solution
vectors "xsol" and "ysol", as detailed below.

The increment in the x solution vector, Ax,is calculated as:

Thus, the solution vector will be calculated using the uniformly-
distributed values: [xs,xs+AXx,xs+2*Ax,...,xs+n*Ax] .Using SMath
Studio the x solution vector can be easily created using the
command:

xsol: range (xs, xe, xstAx)

The y solution vector will be calculated using the Runge-Kutta
algorithm, which is detailed below. The first value in the
y solution will be the initial conditionys, i.e.,

ysol ,=vys

1

Iterative process for solution - version 1

Next, we start an iterative procedure with the index k varying
between 1 and n, i.e., k=1, 2, ..., n. To illustrate the
calculations involved, we illustrate the k-th interval in the
following figure:

k-th interval, with

y € k=12 _.n [H
| |
| ,_,—o—'—‘_'_'_'_'_'_'_d_‘_'_
|
|

ysol = y0 il ¥1 = ys0lgeq
X
X, = x0 xM ®1 = X
)
‘T 2 2
AX

In this figure the lower x limit of the interval is x[k],
which is represented by x0 in the calculations. On the
other hand, the upper x limit of the interval is x[k+1],
which is represented by x1. The correspondingvalues of
the solution are y0 = y(x0) and yl = y(x1). The Runge-
Kutta algorithm uses the mid-point (xM,yM) illustrated
also in the figure.

Runge-Kutta calculations - version 1

The calculations involved in the 4th-order Runge-Kutta
algorithm to calculate yl = ysol[k+1l] are listed below:

1

XM= x0+ = Ax Kl=Ax f(x0, y0)
1

yM= yO+E-Kl K2= Ax-f(xM, yM)
1

yM= yO+E-K2 K3= Ax-f(xM, yM)

yl=y0+ K3 K4= Ax-f(xl, yl)

1
ysol l-yO+—6-(Kl+ 2-K2+ 2-K3+K4)

Solution summary and graph

Once the iterative process has been completed, the
solution will be contained in the column vectors "xsol"
and "ysol". At this point, the user may decide to show
the solution as vectors, or put them together into a
matrix, say,

M= augment (xsol , ysol)

This matrix can be stored in a file, or plotted in a
2D graph to show the solution graphically.

Example of 4th-order Runge-Kutta solution -version 1

d .
Solve the ODE: d_= 31n(x) , subject to the initial

condition: y(0)=1 in the interval: 0 < x < 20

using 100 intervals in the solution.

Solution:

First, define the function f(x,y):

The initial conditions are:

The end of the solution interval is:

Use 100 intervals:
Calculate the increment size, Ax:

Xe— XS
n

Ax:=eval

Create the x solution vector:

Create the y solution vector as a zero matrix of n rows and 1
column, and initialize the y solution vector with the initial

condition ys:

ysol=matrix(n, 1) ysol ;=ys

The following "for" loop calculates the Runge-Kutta algorithm
(version 1) to produce the solution:

for kel ..n
x0:= eval[xsol k]

y0:= eval[ysol k]

xM=eval xO+%-Ax
Kl=eval(ax £(x0, y0))
yM:=eval yO+%-Kl

K2:=eval (Ax- £ (xM , yM)]

yM:=eval yO+%-K2

K3:= eval(Ax f xM, yM)]
yl=eval (yO+ K3)
x1l:= eval[xsol]

Kéd:=eval|Ax: f x1, yl)]

ysol K+ 1= eval 1

f(x, y)=sin(x)+ cos(y)

xs:= 0 ys=1
xe:= 20
n:=100
Ax=0.2

xsol:= eval(xs , Xs+ AX ..

yO+—6-(Kl+ 2-K2+ 2 K3+ K4)

xe)

The solution is summarized into matrix M and shown as a x-y plot:

M:= augment (xsol , ysol)

M M

The plot to the left uses the "Graph by lines" option in the "Plot"
palette, while the plot to the right uses the "Graph by points"
option in the "Plot" palette.

Iterative process for solution - version 2

The second version of the Runge-Kutta solution divides the k-th
interval into three equal parts are illustrated in the figure
below:

k-th interval, with
¢ k=12 ...n
| ' J—
R
| F'_'_'_'_'_'_'_,_,_,—
|
|
ysol .= y0 y13 y23 y1 =ysol.4
X
xk: %0 x13 ®23 ¥l = Xk+1
AX AX AX
SRR
: AX

In this figure the lower x limit of the interval is x[k],
which is represented by x0 in the calculations. On the
other hand, the upper x limit of the interval is x[k+1],
which is represented by x1. The correspondingvalues of
the solution are y0 = y(x0) and yl = y(x1). The Runge-
Kutta algorithm uses two mid-points (x13,y13) and (x23,
y23) illustrated also in the figure.

Runge-Kutta calculations - version 2

The calculations involved in the 4th-order Runge-Kutta
algorithm to calculate yl = ysol[k+1l] are listed below:

1 2
xl3-xO+€-Ax x23-x0+€-Ax K1=Ax-f(x0, yO)

1

y13=y0+—=K1 K2=Ax f(x13, y13)
1

y23= y13+ 2 K2 K3=Ax f(x23, y23)

yl=y0+K1-K2+K3 Kd=Ax f(x1, yl)

1
ysol, , 1= yO+§-(Kl+ 3 K2+ 3 K3+ K4)

Example of 4th-order Runge-Kutta solution -version 2

d .
Solve the ODE: d—i= 31n(x) , subject to the initial
condition: y(0)=1 in the interval: 0 < x < 20

using 100 intervals in the solution.

Solution:

First, define the function f(x,y): f(x, y)=sin(x)+cos(y)
The initial conditions are: xs=0 ys:==1

The end of the solution interval is: xe=20

Use 100 intervals: n:=100

Calculate the increment size, Ax:

Xe— XS
n

Ax:=eval Ax=0.2

Create the x solution vector: xsol=eval(xs, xs+Ax .

Create the y solution vector as a zero matrix of n rows and 1
column, and initialize the y solution vector with the initial
condition ys:

ysol=matrix(n, 1) ysol ;=ys

The following "for" loop calculates the Runge-Kutta algorithm
(version 2) to produce the solution:

. xe)

for kel ..n
x0:= eval[xsol k]

y0:= eval[ysol k]
1
x13=eval xO+§-Ax

x23:=eval xO+%-Ax

Kl=eval(Ax £(x0, y0))

yl3=eval yO+%-Kl

K2:=eval (Ax £(x13, y13))

y23=eval yl3+%-K2]

K3=eval (Ax f(x23, y23))

yl-eval(y0+ Kl K2+ K3)
xl—eval[xsol]

K4—eval(Ax f x1, yl)]

ysol, ,=eval yO+%-(Kl+ 3-K2+ 3-K3+K4)

The solution is summarized into matrix N and shown as a x-y plot:

N:= augment (xsol , ysol)

> .51y 2.5|Y

N N

The plot to the left uses the "Graph by lines" option in the "Plot"
palette, while the plot to the right uses the "Graph by points"
option in the "Plot" palette.

Appendix 5 - The 4th -order Runge-Kutta method for a system of ODEs

Consider the case of a system of two first-order ODEs given by:

dy Y

l=fl X, l=fl(x,y)
dx Y,
dy Y

252 X, l=f2(x,y)
dx Y,

subject to the initial conditions:
YS =Y q [XS 1] and ys, =y, [XS 2]

This system of equations can be re-written as a single ODE in
which y and f are column vectors, i.e.,

d Y1
d_i=f(x' Y) , with y= and f(x, y): E;EX' y%
2 X,y
ysl

The initial conditions are given by the vector: yss=

ys2

Once the system of equations is written as a single ODE, the
Runge-Kutta algorithms presented for a single ODE can be used
to solve the equation. This illustrated in the following
example.

Solve the system of first-order ODEs:

dy 1
dx

=sin(x)+ cos[y l]+ sin[y 2]

dy >
dx

=cos (x)+ sin[y 2]

Subject to the initial conditions:

y1(0)=-1 and y2(0)=1

Solve the ODEs in the interval: 0 £ x £ 20 using 100 intervals.

Solution (version 1) :

First, define the vector function f(x,Vy):

f(x, y)=

sin(x)+ cos[y l]+ sin[y 2]

cos (x)+ sin[y 2]

The initial conditions are:

The end of the solution interval is:

Use 100 intervals:

Calculate the increment size, Ax:

Axi=eval

Xe— XS

n

Create the x solution vector:

-1
xs:=0 =
—_
xe:= 20
n:=100
Ax=0.2

xsol:= eval(xs ; XS+ Ax .. xe)

The y-solution vector gets initialized as follows:

ysol:i=ys

ysol=

3]

The following "for" loop calculates the Runge-Kutta algorithm

(version 1) to produce the solution:

for kel ..n
x0:= eval[xsol k]

yli=eval

xM=eval x0+%- Ax
Kl=-eval [Ax- £(x0,
yM:=eval y0+%- K1
K2:=eval [Ax- f(xM,
yM:=eval y0+%- K2
K3:=eval [Ax- f(xM,
yl=eval(y0+K3)
xl=eval [xsol e l]
K4=eval (Ax f(x1,

y0=-eval (col (yso1l, k)]

v0))

yM))

yM))

v1))

yO+%-(Kl+ 2-K2+ 2-K3+K4)

ysol:=augment (ysol , yl)

After completing the iterative process, the solution is

stored in a row vector called "ysol".

This vector can be

transposed to put together the graph of the two solutions

as illustrated here:

T
ysol:i=ysol

M1:= augment[xsol , col(ysol, l)]

M2:= augment[xsol , col(ysol, 2)]

Yy Yy

o0, o0

veas® e ene ey o’

~o 4 8 12 16 20 ~to 4 8 12 16

M1 M1

M2 M2

The plot to the left uses the "Graph by lines" option in the "Plot"
palette, while the plot to the right uses the "Graph by points"

option in the "Plot" palette.

Solution (version 2):

First, define the vector function f(x,Vy):

sin(x)+ cos[y l]+ sin[y 2]

£(x, y)= .
cos (x)+ 31n[y 2]
C e L -1
The initial conditions are: xs:=0 ys=| |
The end of the solution interval is: xe:=20
Use 100 intervals: n:i=100

Calculate the increment size, Ax:

Xe— XS

Ax:i=eval Ax=0.2

Create the x solution vector: xsoli=eval(xs, xs+Ax .. xe)
The y-solution vector gets initialized as follows:

ysoli=ys

ysol=

The following "for" loop calculates the Runge-Kutta algorithm
(version 1) to produce the solution:

for kel ..n
x0:= eval[xsol k]

y0=-eval (col (yso1l, k)]

x13=eval xO+%-Ax

x23:=eval xO+%-Ax
Kl=-eval (Ax- £(x0, yO)]

yl3:=eval yO+%-Kl

K2:=-eval [Ax- f(x13, le)]

y23:=eval y13+%-K2]

K3=eval (Ax £(x23, y23))
yl=eval(y0+Kl-K2+K3)

x1l:=eval [xsol K+ l]

K4=eval (Ax £(x1, y1))

yl=eval yO+%-(Kl+ 3-K2+ 3-K3+K4)

ysol:=augment (ysol , yl)

After completing the iterative process, the solution is
stored in a row vector called "ysol". This vector can be
transposed to put together the graph of the two solutions
as illustrated here:

T
ysol:=ysol
N1:= augment (xsol , col (ysol , l)]

N2:= augment (xsol , col(ysol, 2)]

=
=

LN oo,

pE [

X 0 1.
0 4 8 12 16 20 4 8 12 16

N1 N1
N2 N2

The plot to the left uses the "Graph by lines" option in the "Plot"
palette, while the plot to the right uses the "Graph by points"
option in the "Plot" palette.

Appendix 6 - The 4th -order Runge-Kutta method for a 2nd order ODE

By Gilberto E. Urroz, Ph.D., P.E.
January 2010

Problem description

Consider the 2nd-order ODE: y"+y y'+3 y=sin (x)

subject to the initial conditions: y(0)=-=1 y'(0)=1

This 2nd-order ODE can be converted into a system of
two lst-order ODEs by using the following variable
substitution:

ul=_l and u2=l at x=0
The variable substitution u =y is equivalent to:
d
E u l- u 2 [Eq l]

while the ODE is re-writtenas: y"=-y y'-3-y+sin(x)

or: d :
Euz-—ul-u2—3-ul+31n(x) [Eq. 2]

The system of equations [Eg. 1] and [Eg. 2] is transformed
into the vector ODE:

u
d |Y1|_ 2
dx v —ul-u2—3-ul+sin(x)
or, u
——u=f(x, u) , where u=s and
dx u,
Y2
filx, uJ= .
() —ul-u2—3-u +31n(x)
1
The initial conditions are us= _ll at xs= 0

Solution (version 1) :

The initial conditions are:

The end of the solution interval is:

Use 100 intervals:

Calculate the increment size, Ax:

Axi=eval

Xe— XS

n

Create the x solution vector:

xs:=0 us:= B l]
1

xe:= 20

n:=100

Ax=0.2

xsol:= eval(xs ; XS+ Ax .. xe)

The y-solution vector gets initialized as follows:

usoli=us

usol=

3]

The following "for" loop calculates the Runge-Kutta algorithm

(version 1) to produce the solution:

for kel ..n
x0:= eval[xsol k]

ul:=-eval

ul:=eval (col (uso1l, k)]

uO)]

uM)]

uM)]

xMi=eval x0+%- Ax
Kl:=-eval [Ax- £(x0,
uM:=eval u0+%- K1l
K2:=eval [Ax- f(xM,
uM:=eval u0+%- K2
K3:=eval [Ax- f(xM,
ul=eval (u0+K3)
xl=eval [xsol e l]
K4=eval (ax f(x1,

ul)]

uO+%-(Kl+ 2-K2+ 2 K3+ K4)

usol:i=augment (usol , ul)

After completing the iterative process, the solution is

stored in a row vector called "ysol".

This vector can be

transposed to put together the graph of the two solutions

as illustrated here:

usoli=usol

M1:= augment[xsol , col (usol , l)]

M2:= augment[xsol , col(usol, 2)]

Yy

M1
M2
The blue line represents ul[l]=y while the red line represents
ul2] = dy/dx.

Solution (version 2):

Y2
f(X’U)=—u ‘u,-3u +sin(x)
1 2
1

N L -1
The initial conditions are: xs:=0 us:= .
The end of the solution interval is: xe:=20
Use 100 intervals: n:i=100

Calculate the increment size, Ax:

Xe— XS
n

Ax:i=eval Ax=0.2

Create the x solution vector: xsol=eval(xs, xs+Ax . . xe)

The y-solution vector gets initialized as follows:

=1
1

The following "for" loop calculates the Runge-Kutta algorithm
(version 1) to produce the solution:

usoli=us
usol=

for kel ..n
x0:= eval[xsol k]

ul:=eval (col (uso1l, k)]

x13=eval xO+%-Ax

x23=eval xO+%-Ax

Kl:=-eval (Ax- £(x0, uO)]

ul3=eval uO+%-Kl

K2:=-eval [Ax- f(x13, ul3)]

uz23=-eval ul3+%-K2

K3=eval (Ax £(x23, u23))
ul=eval(u0+Kl-K2+K3)

x1l:=eval [xsol K+ l]

K4=eval (Ax £(x1, ul))

ul:=-eval

uO+%-(Kl+ 3-K2+ 3-K3+K4)

usol:=augment (usol , ul)

After completing the iterative process, the solution is
stored in a row vector called "ysol". This vector can be
transposed to put together the graph of the two solutions
as illustrated here:

usol:=usol
N1:= augment(xsol , col (usol , 1)]

N2:= augment(xsol , col(usol, 2)]

1

-2 0 2 4 8 10 12
N1
N2

The blue line represents ul[l]=y while the red line represents
ul2] = dy/dx.

Appendix 7 - Finding eigenvalues and eigenvectors of a matrix

Given a matrix, say the 4x4 matrix symmetric matrix A:

The following program calculates the L =242
coefficients of the characteristic A= -2 2-26
equation: |A— }\-I|=O 4 -2 3 8
2 6 8 4
The resulting equation is the polynomial:
2 n-1 n
pl+p2-}\+p3-}\ + ...+ pn-}\ +pn+l-}\ =0

which is solved uising function "polyroots."

The programming steps following the line with function
"polyroots, " below, are used to calculate a matrix, V,
whose columns are the eigenvectors of the matrix A.

The SMath Studio program that calculates eigenvalues and
eigenvectors of A is the following:

n:= rows(]—\)
p=matrix(n, 1)
I:=identity(n)

Ppsepp=-1-0
Bi=1A
P, l:=tr(B)

for jen-1,n-2..1
B:=A-[B—pj+l 1-1]

tr(B)

P317 05+

]
n
p=(-1) " p
A=polyroots (p)
Vi=matrix(h-1, 1)
for jel..n

AN=RA-A T
AAm= submatrix(Ar, 1, n-1, 1, n-1)
bAi=— submatrix(ax, 1, 1, n,n)
-1
xNi=AAm DA
Vi= augment(x}\, V)
V= submatrix(\/ ,1,n-1,1, n)

Vb=matrix (1
for jel..n
Vb 1

, n)
l j:=
Vi=stack(V, Vb)
for jel..n
xNi=col (v, j)
> S
norme (x}\)
V:=augment (V , x}\)
Vi= submatrix (v, 1

,n, n+1, 2n)

Coefficients: Eigenvalues: Eigenvectors:

-1300
530 -1.952 -0.2746 0.0037 0.4651 0.8416
6.3272 -0.2188 0.5103-0.7569 0.3446

p=| 93 A= V=
o -7.8257 -0.6082 0.5693 0.374 -0.4076
) 13.4505 0.7119 0.6446 0.2662 0.0823

Extracting the individual eigenvectors:

xl:i=col(V, 1) x2i=col(Vv, 2) x3=col(Vv, 3) =x4=col(Vv, 4)

-0.2746 0.0037 0.4651 0.8416
-0.2188 0.5103 -0.7569 0.34406
x1l= X2= x3= x4=
-0.6082 0.5693 0.374 -0.4076
0.7119 0.604406 0.2662 0.0823

Checking that the eigenvectors are unit and orthogonal:

T
xd= - 14
x3 x4=(_2 6966 10]

T
x1 X2=[2_884310_l6] norme(xl)=l
T 4
x1 X3=[2_2924 10] norme(x2)=l
T norme (x3)=1
x1 'X4=[—3 5213 10]
T norme(x4)=l
3= - 14
x2 X3—[—1.o401-1o]
T
wd= - 14
x2 X4—[8.4221-1o]

	IntroductionToSMathStudio2010
	Appendix1ExamplesOf2D&3DGraphs
	Appendix2ExamplesOf2DGeometricFigures
	Appendix3TheNewtonRaphsonMethod
	Appendix4RungeKuttaSingleODE
	Appendix5RungeKuttaSystemODE
	Appendix6RungeKuttaSecondOrderODE
	Appendix7Eigenvalues&Eigenvectors

