Introduction to Programming with SMath Studio
Prepared by Gilberto E. Urroz, September 2009

Programming structures and flowcharts

Programming, in the context of numerical applications, simply means controlling a computer, o other
calculating device, to produce a certain numerical output. In this context, we recognize three main
programming structures, namely, (a) sequential structures; (b) decision structures; and (c) loop
structures. Most numerical calculations with the aid of computers or other programmable calculating
devices (e.g., calculators) can be accomplished by using one of more of these structures.

The operation of these programming structures will be illustrated by the use of flow charts. A flow
chart is just a graphical representation of the process being programmed. It charts the flow of the

programming process, thus its name. The figure below shows some of the most commonly used
symbols in flowcharts:

| L5 <>

start/fend process input foutput decision

In a flowcharts, these symbols would be connected by arrows pointing in the direction of the process
flow.

Sequential structures

A complete programming flowchart would have start and end points, and at least one process block in
between. That would constitute the simplest case of a sequential structure. The following figure
shows a sequential structure for the calculation of a sum:

calculate

~ display
N

This flowchart can be simplified slightly by using a single input block to enter both a and b:

input " calculate dizplay i
@W E+ @48 o end
o S

Typically, a sequential structure is shown following a vertical direction:

Page 1 © 2009 Gilberto E. Urroz

The sequential structure shown in this flowchart can also be represented using
pseudo-code. Pseudo-code is simply writing the program process in a manner

resembling common language, e.g.,

inpat

ab
Start
Input a, b

calculate ¢ - a b
Display c
Ce a+d End
display A flowchart or pseudo-code can be translated into code in different ways,
c depending on the programming language used. In SMath Studio, this sequential

structure could be translated into the following commands:

a=2 b=3 S/ Imput a.,b
ci=a+b Sl cx-a+ b
c=5 S/ Displav c©

Here is another example of a sequential structure in SMath Studio showing more than one calculation
step. The sequential structure in SMath Studio doesn't have to follow a strict vertical direction, as

illustrated below.

SEQUENTIAL STRUCTURE:

Sequential structure
in a program "line™:

xA=—10 VAi=2

5 yBi=—3

Xx1:=-10 v1i=2

x2=5 yvai=—23 x5Bi=
hxi=mZi-—xl Ax=15 Ax¥i=xL—xEB
Ly=yZ-yl Ly=-35 Ayyerya-wB

2 2
d2=1Axx +AVYY

dl1=15.8114

The line command and the Programming palette

d2=15.8114

The sequential structure is shown in the right-hand side of the figure above collecting the calculation
steps under a programming line. The figure below illustrate the instructions to insert a programming

line in a SMath Studio worksheet. The /ine command, together with other
programming commands, is listed in the Programming palette shown here:

Programming =

if while for hne

1 The algorithmic statement ¢ < a+b represents the assignment ¢ := a + b in SMath Studio

Page 2

© 2009 Gilberto E. Urroz

The "line"™ command can be entered:

(a2) Using "line™ in the "Programming™ palette
(b) Typing "line("™ in an entry region
L Hl\ 1
1 1 1
+
|
(1} @ 3
The line command produces 2 entry points.

To add more entry points:

entry points

corner button

(1) Click between the two
(2) Drag down lower right
(3) A new entry point iz added

4dd more entry points as needed

The line command can be used to add sequential structures to entry points in other programming

instructions as will be

Decision structure

illustrated below.

A decision structure provides for an alternative path to the program process flow based on whether a
logical statement is true or false. As an example of a decision structure, consider the flowchart for the

function listed below:

(| x+1].if

J&x)= x—1Lif

The flowchart is shown on the right. The corresponding

pseudo-code is shown

r< =1

x=-1

below:
start
input x
if x < -1 then
else
Y « |X_l|
display x,y
end

¥« |=+1]

In SMath Studio a decision structure is entered using the if’
command. Instructions on entering the if command are

shown below:

Page 3

md)

© 2009 Gilberto E. Urroz

The "if" command can be entered:
(1) Using "if"™ in the "Programming™ palette
(2} Typing "if (condition, true, false)" iF o

Using "if"™ in the "Programming™ palette
produces these entry forms in the structure:

Elx]=1if =<1
|x-+l|

el=ze
-1

To illustrate the use of the if command within SMath Studio, we enter the function
f(x), defined above, as shown here: » —» —» —» - - > > > > > — —

Logical statements and logical operations

Decision structures require a condition to trigger a decision on the program flow. Such condition is
represented by a logical statement. Within the context of programming numerical calculations, a
logical statement is a mathematical statement that can be either true or false, e.g., 3>2, 5<2, etc. In
SMath Studio the logical outcomes true and false are represented by the integer values / and 0,
respectively.

The following figure illustrates examples of logical statements. It also includes examples of the four
logical operations: (1) negation (not =); (2) conjunction (and [1); (3) disjunction (or [); and, (4)
exclusive or (xor [J). The figure also includes the truth tables for these four operations. A fruth table is
a table showing the outcome of all possible combinations of #rue and false statements.

Logical statementz (use zymbols in the "Boolean"™ palette):

J/inegqualities
a Truth tables:

3x2=1 // true IxZ=0 . . -
i . . S /Hegation (not): J/Conjunction (and):
J/Boolean equality & non-egquality:
Sl=0
3=2=0 // false 322=1 [/ true - 1a1=1
. . | 1A0=0
Lezs-than-or-equal & Greater-than-or-egual:
onl=0
Srm=1 S/ true S5<o=0 ff false oaD=0
Logical operations: S iDisjunction (or): J/Exclusive or (xor):
// negation (not): a(3=z2]=0 1y1=1 1®1=0
// conjunction (and): ([3>2)a(2>3)=1 1yo=1 1®0=1
/f dijunction{or): (3=2)v(5=2)=1 oyl=1 0®ml=1
ff execlu=sive or (xor): (3{2]@[2}1]:1 oyo=0 0mo=0
. . Boolean =
The symbols for the comparison operators (=, <,>, <, 2, #) and logical = <« > < > =
operations (- , [, [l [) are available in the Boolean palette shown here: = A v P

Notice the presence of the Boolean equal (bold =) which represents a comparison, rather than an
evaluation. The Boolean equal sign can be used to define equations in SMath Studio, e.g., in this solve
command:

zolve 3:n[x]=x—~%—,x =1.0658

Page 4 © 2009 Gilberto E. Urroz

Examples of if statements used to define functions

The following figure illustrates other examples of if statements used in the definitions of functions:

Decizion structures applied to definition of functions:

I £(2)=2 else gl-3,-2)=3.60%¢8
else f['_9]=5 p
A E6+x

g(x, v]

Nested if statements
Decision structures, i.e., if statements, can be nested as illustrated below:

S /Hezted "if" s=tatements:

3[x,3?]:=if mx0 3[2,2]=2
if y=0

ey s(z,-2)=1.2122
3e
A2 EYY

el
else
Irx+y

Combination of if statements with line statements

The following two examples illustrate an if statement that exchanges the values of two variables x and
v if x<y, or changes the signs of both variables otherwise. In the first case, x<y, thus, the values get
exchanged:

cazse [(a): X<y, exchange X and y:

=23 yi= 4
if x=v
Lempi=x
Hi=v
yi=tTemp
el=ze
Hi=—X
Y=—¥
x=4 y=3

Page 5 © 2009 Gilberto E. Urroz

In the second case, x<y, thus the else clause is activated and both x and y have their signs changed:

case(b): x>y, change gigns of x and y:

if =x<vy
Li=x
Hi=y
yi=t

else
®i=—Xx
Vi=—¥

Loop structures

In a loop structure the process flow is repeated a finite number of times before

being send out of the loop. The middle part of the flowchart to the right

illustrates a loop structure. The flowchart shown represents the calculation of

a sum, namely,
n 1

S=) —

=31

k=1

The sum S, is initialized as S, « 0, and an index, £, is initialized as k «— 0

before the control is passed on to the loop. The loop starts incrementing k and
then it checks if the index & is larger than its maximum value n. The sum is
incremented within the loop, S, < S, + 1/k, and the process is repeated until

the condition k>n is satisfied. After the condition in the decision block is
satisfied (7 = true), the control is sent out of the loop to the display block.

In terms of programming statements, there are two possible commands in

SMath Studio to produce a loop: while and for. The pseudo-code for a while

loop interpreting the flowchart to the right is shown below:

start

input n

SH‘— 0

k < 0

do while ~ (k>n)
k « k + 1
Sn « Sn + l/k

end loop

display n, Sa

end

0

Since a while loop checks the condition at the top of the loop, the condition was converted to ~ (k > n),

1e., not(k>n)=k <n.

Page 6

© 2009 Gilberto E. Urroz

The while command in SMath Studio
S/The "while™ command can be entered by using:
(1) Using "while™ in the "Programming” palette while 1
(2) Typing "while (condition,body) "™]

The exprezszsion defining the "condition™ must be modified
within the "while™ loop =0 that an exit can be provided.

ni=20 k=1 3ISn=0

The pseudo-code listed above is translated as follows in SMath Studio: — — 1
while ﬂ[k}n]

This summation can also be calculated using SMath Studio's summation

1
command: Sni=Sn+ -
20 k=k+1
1
¥=3'59?? Sn=3.5977
k=1

Here is another example of a while loop in SMath Studio:

S /Example: adding even numberz from 2 to 20
500:=0 S/Initigalize sum (500)

k=2 S/Initialize index (k)

while k<20

500=500+k S /M"while™ loop
k=k+2

k=22 500=110

/f Thiz operation can be accomplished using a summation:
5= Z (2%]
5=110

While loops can be nested as illustrated in the left-hand side of the figure shown below. The
corresponding double summation is shown on the right-hand side of the figure below.

ff Hested "while™ loops:

501=0 k=1 =1

+
while k=5
3i=1
while j =5 5 5
S01:=501+kJ S05:= Z Z (k3] sos=2z22s
i=3+1 k=114=1
k=k+1
S01=225

Page 7 © 2009 Gilberto E. Urroz

The figure to the right shows an alternative flowchart for calculating

the summation: @
!
S,=2,—
27
The hexagonal symbol in the flowchart shows three elements: (1) the
initialization of the index, k «<— I; (2) the index being incremented,
k < k + I; and, (3) the condition checked to exit the loop, k > n.
This hexagonal symbol represents the for command for this

summation. G - il
A more general symbol for a for command is shown below. This
symbol shows a for loop with index £, starting at value &, and ending
at value k; with increment Ak: ke k=
’ k “— n
+1
g
k< I'i'.l:l I{} n m k
ke |t
+ Bk
loop
statements display
n Sy

The index, therefore, takes values k = ky, kot 4k, ky+24k, ..., kens, such that k., < k; within one Ak.

The for and range commands in SMath Studio

S /The "for" command can be entered by uszing:
(1) Using "for"™ in the "Programming™ palette
(2) Typing "for(index,range,body) "

for 1=1
1

The for command in SMath Studio uses a range of values to indicate the values that the index £ takes to
complete the loop.

Page 8 © 2009 Gilberto E. Urroz

Using ranges:

Fanges are needed for the "for" statement.

A range represents a vector whose elements follow a certain pattern.
Ranges can be entered as:

(1) range(start,end) becomes: start..end (increment = 1)
(2) range(=start,end,start+increment)} becomes: start, start+increment..end

A range reprezents a column vector. Below, wWwe use transposed vectors to
show ranges as row vectors:

ffExample=z of ranges with increment of 1:
S /Type "range (2,5)" to produce:

ri==2..5% T
r1 =(2 3 4 s5)

S /Type "range (10,18)" to produce:
r2=10..18 T

r2 =(10 11 12 13 14 15 16 17 18)

S/ Examples of ranges with positive increment:
S F Type "range (2,18,4)"™ to produce:

r3=2,4..18 T
r3 =[2 4 &2 1012 14 15 18]

S/ Type "range (20, 300,80)" to produce:

r4=20,80..300 T
re =(20 80 140 200 260)

/S f Examples of rangez with negative increment:
S f Type "range (100,20,80)™ to produce:

r5:=100, 80..20 T
r5 =(100 20 €0 20 20)

Sf Type "range (5,1,4)™ to produce:

ré=5,42..1 IET=(5 432 1)

Here is an example of the for command in SMath Studio using the range /..10:
S/ Example sum of even numbers using "for™:
S03:=0 Jf initialize a sum (503)

for k=1 ..10 fi"foxr"™ loop, enter the range as:
S03=503+2'k f/'range(l,10)"

S03=110 Sf final wvalue of 503

Page 9 © 2009 Gilberto E. Urroz

The double summation programmed earlier using while loops, can be programmed also using for loops:

S/ Hested "for®

504:=0

for jel1.

loops:

.5

for k=1..5
S02=5304+k "3

504=225

A programming example using sequential, decision, and loop structures

This example illustrates a program in SMath Studio that uses all three programming structures. This is
the classic “bubble” sort algorithm in which, given a vector of values, the smallest (“lighter”) value
bubbles up to the top. The program shown uses a row vector 7S, and refers to its elements using sub-
indices, e.g., Si, etc. The example shows how to enter sub-indices. The output from the program is the

sorted vector 7S.

S/ Example uzing "for®

rs=(5.4 1.2 3.5 10.2 —-2.5 4¢.1]

HSF=;Ength[IS] ni=g
for kel ..n5-1
for j=k+1 ..n53
if ISlk}-ISlj
tlemp:=:r51:I
TSy 4FES g
ISlk=temp
elze
0
rs=(-2.5 1.2 3.5 4.1 5.4 10.2]

/4 This sorting can be accomplished using function

rT=(5.4 1.2 3.5 10.2 —-2.5 4.1]

and "if™:

Clazgzical bubble =2ort

Given a wvector "rS"

£/
£

£
£

First, finmd length of vector

Double loop that re-arranges
order of elements in vector 5

£
£

To enter sub-indices use,
for example, r3{l,k

/4 Besult: wvector sorted

"zort":

T
SDIE[IT]=

ks L
[S B

=
=,
[n8]

Page 10 © 2009 Gilberto E. Urroz

Many programming applications, such as the one shown above, use vectors and matrices. Luckily,
SMath Studio already includes a good number of functions that apply to matrices, e.g,:

» Creating matrices: augment, diag, identity, mat, matrix, stack

* Extracting rows, columns, elements: col, el, row, submatrix, vminor, minor

» Characterizing matrices: cols, det, length, max, min, normli, norme, normi, rank, rows, tr
» Sorting functions: csort, reverse, rsort, sort

» Matrix operations: alg, invert, transpose

Some of these functions are also available in the Matrices palette: Matrices =
G0 [o] a7 AF X W
(1) Matrix 3x3 (Ctrl+M) (mat) (1} (2} (3) (4) (5) (6)

(2) Determinant (det)

(3) Matrix transpose (Ctrl+1) (transpose)
(4) Algebraic addition to matrix (alg)

(5) Minor (minor)

(6) Cross product

Examples of matrix operations were presented in the document Introduction to the use of SMath
Studio.

Steps in programming
The following are recommended steps to produce efficient programs:

(1 Clearly define problem being solved

2) Define inputs and outputs of the program

3 Design the algorithm using flowcharts or pseudo-code

“) Program algorithm in a programming language (e.g., SMath Studio programming commands)
5) Test code with a set of known values

Errors in programming
Typically there are three main types of errors in developing a program:

1 Syntax errors: when the command doesn't follow the programming language syntax. These are
easy to detect as the program itself will let you know of the syntax violations.

2) Run-time errors: errors due to mathematical inconsistencies, e.g., division by zero. These may
be detected by the program also.

3) Logical errors: these are errors in the algorithm itself. These are more difficult to detect, thus
the need to test your programs with known values. Check every step of your algorithm to make sure
that it is doing what you intend to do.

Page 11 © 2009 Gilberto E. Urroz

Page 12 © 2009 Gilberto E. Urroz

