RAMP DESIGN

by Will Massie, SOMAR April 29, 2010

(DISCLAIMER: This worksheet is shared only as an example and should be used with caution.) (The calculations are not guaranteed to be error free.)

Define the section modulus for ramp section

(section modulus calculated using AutoCAD, see graphic below)

SINOQ:= 377.0638111

Calculate the maximum allowable stress in tension and compression

```
ou = ultimate tensile strength (ksi)
oy = yield stress (ksi)
FS = safety factor
oall = maximum allowable stress in tension or compression (ksi)
```

ksi := 1000 psi

 $\sigma u = 58 \, ksi$ $\sigma y = 36 \, ksi$ FS = 3.0

 $\sigmaall = \frac{\sigma y}{FS}$ $\sigmaall = 12 ksi$

Calculate the maximum allowable moment

Mall = maximum allowable moment (ft*lb)

Mall:= Smod σall

Mall= 3.7706·10 5 ft lbf

FBD, V, and M diagrams

CASE 1 = front axle of large forklift on ramp
CASE 2 = both axles of smaller fully-loaded forklift on ramp

CASE 1: front axle of unloaded large forklift on ramp

Calculate Bending Moment:

```
len = length of the ramp (ft)
lenC = distance from A to C, the point of application of Load C (ft)
Lc = load at C (kips)
Rb = reaction at B (kips)
Ra = reaction at A (kips)
posVmax = maximum positive shear (+kips)
negVmax = maximum negative shear (-kips)
Mmax = maximum bending moment (ft*lb)
```

len:= 21 ft lenC:= 10.5 ft

Lc:= 67.739*kip*Note: actual front axle load for unloaded
Hyster H1050HDS

Calculate the reactions at A and B:

Ra:= Lc - Rb Ra = 33.8695
$$kip$$

Calculate the maximum shear forces:

posVmax:= Ra posVmax=
$$33.8695 kip$$

negVmax:= Rb negVmax= $33.8695 kip$

Calculate the maximum bending moment:

$$Mmax = 3.5563 \cdot 10^{5} ft lbf$$

Compare maximum bending moment to allowable bending moment:

result="Pass"

Calculate Max Deflection:

```
E = modulus of elasticity (ksi)
I = moment of inertia about horizontal centroidal axis (in^4)
ymax = maximum deflection (in)
```

Define modulus of elasticity and moment of inertia values:

<-- Note: lenC must be less than half the

total length (len)

Calculate the maximum deflection:

if
$$lenC \le \frac{len}{2}$$

$$ymax := \frac{-Lc \cdot lenC}{3 \cdot E \cdot I \cdot len} \cdot \left(\frac{len^2 - lenC^2}{3}\right)^{\frac{3}{2}}$$

else
$$lenC := len - lenC$$

$$ymax := \frac{-Lc \cdot lenC}{3 \cdot E \cdot I \cdot len} \cdot \left(\frac{len^2 - lenC^2}{3}\right)^{\frac{3}{2}}$$

ymax = -0.1847in

3/6

Calculate Bending Moment:

```
Lc = load at C , which is the larger of the two loads (kips)
Ld = load at D (kips)
wheelbase = the distance between the wheels on the forklift (in)
len = length of the ramp (ft)
lenC = distance from A to C, the point of application of Load C (ft)
lenD = distance from A to D, the point of application of Load D (ft)
Rb = reaction at B (kips)
Ra = reaction at A (kips)
posVmax = maximum positive shear (+kips)
negVmax = maximum negative shear (-kips)
Mmax = maximum bending moment (ft*lb))
```

Lc:= 64.282kip Ld:= 4.475kip

Note: data shown corresponds to a loaded Hyster H300HD

len:= 20 ft lenC:= 9 ft lenC+ wheelbase lenD= 19.825 ft

Calculate the reactions at A and B:

 $Rb = \frac{Lc \cdot lenC + Ld \cdot lenD}{len}$ Rb = 33.3627 kip

Ra:= Lc+ Ld- Rb Ra= 35.3943 kip

Calculate the maximum shear forces:

posVmax = Ra posVmax = 35.3943 kip

negVmax = Rb negVmax = 33.3627 kip

Calculate the maximum bending moment:

Mmax:= posVmax lenC

Mmax=3.1855·10 5 ft 1bf

Recalculate allowable bending moment using yield strength

Mall≔ Smod oall

Mall= 3.7706·10 ⁵ ft lbf

Compare maximum bending moment to allawable bending moment:

if Mall>Mmax
 result:= "Pass"
else
 result:= "Fail"

result="Pass"

Calculate Max Deflection:

E = modulus of elasticity (ksi)

I = moment of inertia about horizontal centroidal axis (in^4)

ymaxC = maximum deflection at C from load C only (in)

xC = position of maximum deflection (ft) measured from point A
θa = angle of deflection at A from load D only (radians)

yD = deflection at xC from load D only (in)

ymax = maximum deflection (in)

Define modulus of elasticity and moment of inertia:

Calculate the maximum deflection at C from load C only:

$$ymaxC := \frac{-Lc \cdot lenC}{3 \cdot E \cdot I \cdot len} \cdot \left(\frac{len^2 - lenC^2}{3} \right)^{\frac{3}{2}} ymaxC = -0.1494 in$$

Calculate the position of the point of maximum deflection:

$$xC = len - \left(\frac{len^2 - lenc^2}{3}\right)^{\frac{1}{2}}$$
 $xC = 9.6882ft$

Calculate the angle of deflection at A from load D only:

$$\theta a := \left(\frac{(-Ld) \cdot lenD}{6 \cdot E \cdot I \cdot len}\right) \cdot (2 \cdot len - lenD) \cdot (len - lenD) \qquad \theta a = -3.0739 \cdot 10^{-6}$$

Calculate the reaction at A if only load D existed:

$$Ra = \frac{Ld \cdot (len - lenD)}{len}$$
 Ra = 0.0392 kip

Calculate the deflection at xC if only load D existed:

if xC>lenD

$$yD:= \theta a \cdot xC + \frac{Ra \cdot xC}{6 \cdot E \cdot I} - \frac{Ld}{6 \cdot E \cdot I} \cdot (xC - lenD)^{3}$$
else

$$yD:= \theta a \cdot xC + \frac{Ra \cdot xC}{6 \cdot E \cdot I}$$

$$yD=-2.7351 \cdot 10^{-4} in$$

Due to the principle of superposition deflections "ymaxC" and "yD" may be added to obtain the total maximum deflection at xC:

$$ymax = yD + ymaxC$$

$$ymax = -0.1497 in$$

References:

Mechanics of Materials, 2nd ed. by Beer and Johnson, pg. 446-48 Formulas for Stress and Strain, 5th ed. by Roark and Young, pg. 96-97