
Introduction to Programming with SMath Studio
By Gilberto E. Urroz, October 2010 - Updated July 2012

In this section we introduce basic concepts of programming for numerical solutions
in SMath Studio.

Programming__structures__and__flowcharts

Programming, in the context of numerical applications, simply means controlling a
computer, o other calculating device, to produce a certain numerical output. In this
context, we recognize three main programming structures, namely, (a) sequential
structures; (b) decision structures; and (c) loop structures. Most numerical
calculations with the aid of computers or other programmable calculating devices
(e.g., calculators) can be accomplished by using one of more of these structures, or
combinations of the same.

The operation of these programming structures will be illustrated by the use of flow
charts. A flow chart is just a graphical representation of the process being programmed.
It charts the flow of the programming process, thus its name. The figure below shows
some of the most commonly used symbols in flowcharts:

In a flowchart, these symbols would be connected by arrows pointing
in the direction of the process flow.

Sequential__structures

A complete programming flowchart would have start and end points,
and at least one process block in between. That would constitute
the simplest case of a sequential structure. The following figure
shows a sequential structure for the calculation of a sum:

Typically, a sequential structure is shown following
a vertical direction: -> -> -> -> -> -> -> -> -> -> -> ->

The sequential structure shown in this flowchart can
also be represented using pseudo-code. Pseudo-code
is simply writing the program process in a manner
resembling common language, e.g.,

Start
Input a, b
c <- a + b
Display c

End

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

1 / 24

A flowchart or pseudo-code can be translated into code in different ways, depending
on the programming language used. In SMath Studio, this sequential structure could be
translated into the following commands:

2a 3b // Input a,b

bac // c <- a + b

5c // Display c

Here is another example of a sequential structure in SMath Studio showing more than
one calculation step. The sequential structure in SMath Studio doesn't have to follow
a strict vertical direction, as illustrated below.

10x1 2y1

5x2 3y2

x1x2∆x 15∆x

y1y2∆y 5∆y

2
∆y

2
∆xd1 15.81d1

The__"line"__command__and__the__Programming__palette

A couple of examples of sequential structures were shown in the
examples above. In SMath Studio, we can collect the calculation
steps under a programming line. The figure to the right -> -> -> ->
illustrate the instructions to insert a programming line in a
SMath Studio worksheet. The "line" command, together with other
programming commands, is listed in the Programming palette shown.

The "line" command can be entered in one of these ways:
(a) Using "line" in the "Programming" palette
(b) Typing "line(" in the worksheet

Creating a programming line - adding entry points

By default, the "line" command produces a vertical line with two entry points or
placeholders, as shown in (1), below:

To add additional entry points, or placeholders, to a line proceed as follows:

(1) Click between the two entry points, or to the left of the line
(2) Drag down the lower right corner button that shows up
(3) A new entry point is added

Repeat steps (1) and (2) to add more entry points as needed.

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

2 / 24

Removing entry points

If you extend the programming line past the number of entries needed, you can reduce
the number of entry points by clicking on the lower right corner button, and dragging
it upwards until the entry points not needed have been removed. The figure below shows
the two steps described above.

Using__the__"line"command

The "line" command can be used to keep together a series of commands in a sequential
programming structurein a SMath Studio Worksheet. For example, the commands calculating
∆xx, ∆yy, and d2, in the following listing have been placed within a programming "line":

10xA 2yA

5xB 3yB

2
∆yy

2
∆xxd2

yByA∆yy

xBxA∆xx

15.81d2

in the example shown above, the only purpose of using the programming line is to keep
those three calculation lines together. You can then select them and move them as a
single unit. Next, we show how to use a command line for defining functions.

Defining__a__function__with__a__"line"__command

SMath Studio allows the definition of functions whose body is defined by a programming s
equence. For example, the following function, f.1(x,y), is defined as a sequence
structure contained within a "line" command:

2a 5b

2
s

2
r

yaxbs

ybxarf1 , yx

Examples of calculating with f1(x,y): 16.12f1 , 42 30f1 , 42

47.07f1 , 102 47.07f1 , 102

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

3 / 24

Here is another example of using a programming line to define a function. Function Rh(D,y)
calculates the hydraulic radius of a circular open channel given the diameter, D, and the
flow depth,y:

P

A

θDP

cos θsin θθ
4

2
D

A

arccos
D

y
21θ

Rh , yD

Calculating with Rh(D,y):

2.5Rh , 510 0.31Rh , 0.53.5

0.06Rh , 0.11.2
1.07Rh , 25

Decision__structure

A decision structure provides for an alternative path to the program process flow based
on whether a logical statement is true or false. As an example of a decision structure,
consider the flowchart for the function listed below:

The flowchart is shown on the right.
The corresponding pseudo-code is
shown below:

start
input x
if x < -1 then

y <- |x+1|
else

y <- |x-1|
display x,y

end

In SMath Studio a decision structure
is entered using the if command.
Instructions on entering the if
command are shown below:

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

4 / 24

DECISION__STRUCTURE__-__The__"if"__command:

The "if" command can be entered:
(1) Using "if" in the "Programming" palette
(2) Typing "if(condition, true, false)"

if

else

Using "if" in the "Programming" palette
produces these entry form: -> -> -> -> ->

The general operation of the "if" command is as follows:

* The "condition" is a logical statement that could be true or false.
* If "condition" is true then "command(s) 1" get(s) executed.
* If "condition" is false, then "command(s) 2", associated with the "else" particle
get(s)executed as default command(s).

To illustrate the use of the if command within SMath Studio, we enter the function f(x),
defined above, as shown here:

if

else

1x

1x

1xf2 x

A plot of this function is shown below:

f2 x

-4 -2 0 2 4

3

2

1

0 x

y

Comparison__operators__and__logical__operators__-__The__"Boolean"__palette

Decision structures require a condition to trigger a decision on the program flow.
Such condition is represented by a logical statement. Within the context of programming
numerical calculations, a logical statement is a mathematical statement that can be
either true or false, e.g., 3>2, 5<2, etc. In SMath Studio the logical outcomes true
and false are represented by the integer values 1 and 0, respectively.

Some of the most elementary logical statements are those obtained by comparing numbers.
Comparison operators and logical operators are available in the "Boolean" palette in SMath
Studio:

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

5 / 24

The top line of the "Boolean" palette contains the comparison operators, while the bottom
line of the same palette contains the logical operators. The comparison operators should
be familiar to all: equal (=), less than (<), greater than (<), etc. The logical operators
are: negation (¬), conjunction (and), disjunction (or), and exclusive or, or xor.

Examples__of__comparison__operations

The following are some examples of comparison operations which resultin a logical value
of 0 or 1:

Inequalities: 123 // true 023 // false

Boolean equality & non-equality:

023 // false 123 // true

Less-than-or-equal& Greater-than-or-equal:

1π5 // true 0π5 // false

Logical__operators__and__truth__tables

The "Boolean" palette in SMath Studio includes the following four logical operations:

(1) negation (not): 123 023

(2) conjunction (and): 13423 03423

(3) dijunction(or): 12523 02523

(4) exclusive or (xor): 11223 01223

The "negation" operator is referred to as a "unary" operator because it applies to only
one logical statement. On the other hand, the other three operators (conjunction,
disjunction, and exclusive or) are known as "binary" operators, because they require two
logical statements to operate upon.

Truth tables refer to the result of the different logical operators. For example, the
negation of a true statement is false , and vice versa. Recalling that in SMath Studio 1
stands for "true", and 0 for "false", we can show the truth tables of the four logical
operators as follows:

Negation__(not): Conjunction__(and):

01
111

10
001

010

000

Disjunction__(or): Exclusive__or__(xor):

111 011

101 101

110 110

000 000

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

6 / 24

Examples__of__"if"__statements__with__logical__operations

The following function g1(x,y) is defined using the logical statement "(x<0) and (y<0)".
Evaluations of the function, and a graph of the same, are also shown below.

if

else
0

2
y

2
x

0y0xg1 , yx
0g1 , 02

3.61g1 , 23

g1 , yx

x

y

z

0 22

2

4
4

4

6
6

6

8

8

8

Nested__"if"__statements

If the decision tree includes more than one condition, then it may be necessary to
"nest" one "if" statement within another as illustrated in the definition of the
following function s(x,y):

if

else

yx3

if

else

yx2

yx

0y
0xs , yx

In this case, if the condition "x>0" is true, then it is necessary to check the inner
"if" statement, namely:

if

else

yx2

yx

0y

whose operation was discussed earlier.

Thus, for function s(x,y), the evaluation proceeds as follows:

* if x>0 and if y>0, then s = yx , e.g., 2s , 22

* if x>0 and if y<0, then s = yx2 , e.g., 2s , 23

* if x<0, then s = yx3 , e.g., 2s , 102 , or, i2.83s , 22

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

7 / 24

Combining__the__"if"__command__with__the__"line"__command

The true or false conditions in a "if" statement may lead to the execution of more than
one statement as illustrated in the following examples, where, "line" statements are used
to produce more than one operation:

case__(a):__xx<yy,__
exchange__xx__and__yy:

case(b):__x>y,__change
signs__of__x__and__y:

3xx 4yy 4x 3y

if

else

yyyy

xxxx

tempyy

yyxx

xxtemp

yyxx if

else

yy

xx

ty

yx

xt

yx

4xx 3yy
4x 3y

If we wanted to turn this "if" statement into a function, we need to keep in mind the
fact that a function can only return a single value. To be able to return more than one
value, we need to put our results, x and y, into a column vector of two rows, e.g.,

y

x

if

else

yy

xx

ty

yx

xt

yxf3 , yx

Evaluations of this function follow:

Case__(a),__x<y: Case__(b),__x>y:

3

4
f3 , 43

3

4
f3 , 34

NOTE: To enter a vector you need to use the "Matrix (Cntl+M)" icon in the "Matrices"
palette. Then, enter the number of rows and columns in the resulting entry form,
and press [Insert]. (See figure below)

Then type the components of the vector or matrix in the proper placeholders.

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

8 / 24

Loop__structures:

In a loop structure the process flow is repeated a finite number
of times before being send out of the loop. The middle part of
the flowchart to the right illustrates a loop structure. The
flowchart shown represents the calculation of a sum, namely,

=

n

1k
k

1
n

S

The sum Sn is initialized as Sn ← 0, and an index, k, is
initialized as k ← 0 before the control is passed on to the
loop. The loop starts incrementing k and then it checks if the
index k is larger than its maximum value n. The sum is
incremented within the loop, Sn ← Sn + 1/k, and the process
is repeated until the condition k>n is satisfied. After the
condition in the decision block is satisfied (T = true), the
control is sent out of the loop to the display block.

In terms of programming statements, there are two possible
commands in SMath Studio to produce a loop: while and for.
The pseudo-code for a "while" loop, interpreting the flowchart
to the right, is shown below:

start
input n
Sn <- 0
k <- 0
do while ~(k>n)
k <- k + 1
Sn <- Sn + 1/k

end loop
display n, Sn
end

Since a "while" loop checks the condition at the top of the loop, the condition was
converted to ~ (k > n), i.e., not(k>n) = nk

The__while__command__in__SMath__Studio

The "while" command can be entered by using:
(1) Using "while" in the "Programming" palette
(2) Typing "while(condition,body)"

while

The expression defining the "condition" must be modified within the "while" loop so that
an exit can be provided. Otherwise, you may end up in an infinite loop that can only
be stopped by using the "Interrupt" button in the SMath Studio menu (see below):

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

9 / 24

Example: adding even numbers from 2 to 20

0S00 //Initialize sum (S00)

2k //Initialize index (k)

while

2kk

kS00S00

20k

//"while" loop with
a "line" command

22k 110S00 //Results

This operation can be accomplished using a summation:

=

10

1k

k2S
110S

The "summation" symbol is available in the "Functions" palette.

Nested__"while"__loops

While loops can be nested as illustrated in the example
below (left-hand side). The corresponding double
summation is shown on the right-hand side:

Double__summation__with
nested__"while"__loops:

Double-summation__symbol
to__calculate__same__sum:

0S01 1k 1j

while

1kk

while

1jj

jkS01S01

5j

1j

5k

=

5

1k =

5

1j

jkS05

225S05

225S01

The__"for"__loop__flowchart

The figure to the right shows an alternative flowchart
for calculating the summation:

=

n

1k
k

1
n

S ----------------------->

The hexagonal symbol in the flowchart shows three
elements:
(1) the initialization of the index, k ← 1;
(2) the index being incremented, k ← k + 1; and,
(3) the condition checked to exit the loop, k > n.
This hexagonal symbol represents the "for" command
for this summation.

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

10 / 24

The index, therefore, takes values

k = k0, k0+∆k, k0+2*∆k,…,kend,

such that within one ∆k.
f

k
end

k

The__"range"__command__in__SMath__Studio

The "range" command produces a vector of indices
required for setting up a "for" loop. We describe the
"range" command first.

A range represents a vector whose elements follow a
certain pattern. Ranges can be entered as:

(1) range(start,end)
becomes: start..end (increment = 1)

(2) range(start,end,start+increment)
becomes: start, start+increment..end

A "range" command generates a column vector. Below, we
use transposed vectors to show ranges as row vectors:

Examples of ranges with increment of 1:

//Type "range(2,5)" to produce: ..52r1
5432

T
r1

//Type "range(10,18)" to produce: ..1810r2

181716151413121110
T

r2

Examples of ranges with positive increment:

// Type "range(2,18,4)" to produce: , ..4 182r3
18161412108642

T
r3

// Type "range(20,300,80)"to produce: , ..80 30020r4
2602001408020

T
r4

Examples of ranges with negative increment:

// Type "range(100,20,80)"to produce: , ..80 20100r5
20406080100

T
r5

// Type "range(5,1,4)" to produce:
, ..4 15r6

12345
T

r6

The__"for"__command__in__SMath__Studio

The "for" command can be entered by using:

(1) Using "for" in the "Programming" palette
(2) Typing "for(index,range,body)"

for

=

10

1k

k2S03
Here is an example of the "for" command in SMath Studio using the
range 1..10 to calculate a summation:

--

0S03 // initialize a sum (S03)

for
k2S03S03

..101k //"for" loop, enter the range as:
//'range(1,10)'

110S03 // final value of S03

--

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

11 / 24

Nested__"for"__loops

As in the case of "while" loops, "for" loops can also be nested, as illustrated in the
following example that calculates a double summation:

=

5

1j =

5

1k

jkS04

--

0S04 // initialize S04

for
for

jkS04S04
..51k

..51j
// nested "for "loops with
// the same range of i and k:
// 'range(1,5)'

225S04 // final value of S04

--

A__programming__example__using__sequential,__decision,__and__loop__structures

This example illustrates a program in SMath Studio that uses all three programming
structures. This is the classic “bubble” sort algorithm in which, given a vector of
values, the smallest (“lightest”) value bubbles up to the top. The program shown
uses a row vector rS, and refers to its elements using sub-indices, e.g., S[1,k], etc.
The example shows how to enter sub-indices. The output from the program is the sorted
vector rS.

--

4.12.510.23.51.25.4rS // Given a vector "rS"

length rSnS 6nS // First, find length of vector

// Double loop that re-arranges
// order of elements in vector rS

for
for

if

else
0

temp
k1

rS

k1
rS

j1
rS

j1
rStemp

j1
rS

k1
rS

..nS1kj
.. 1nS1k

// To enter sub-indices use,
// for example, rS[1,k

10.25.44.13.51.22.5rS // Result: vector sorted

--

This sorting can be accomplished in SMath Studio using function "sort":

4.12.510.23.51.25.4rT

10.2

5.4

4.1

3.5

1.2

2.5

sort
T

rT

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

12 / 24

Creating__a__bubble__sort__function

The bubble-sort algorithm can be turned into a function as follows:

rS

for
for

if

else
0

temp
k1

rS

k1
rS

j1
rS

j1
rStemp

j1
rS

k1
rS

..nS1kj
.. 1nS1k

length rSnSmySort rS

Here is an application of this function:

4.12.510.23.51.25.4rS

10.25.44.13.51.22.5mySort rS

The__"break"__and__"continue"__statements

These statements are available in the second line of the "Programming" palette.

* The "break" statement provides an earlier way out of a "for" loop if a condition
is detected within the loop before all the repetitions of the loop, as required
by the index definition, are completed.

* The "continue" statement basically lets the process of a program go through the
location of the statement without any action taken.

To illustrate the use of the "break" and "continue"
statements, consider the program written here: ---->
The variables XS is first initialized as zero, then
a for look with index k = 1, 2, ..., 10, activates a
"for" loop, in which XS is incremented by 1 in each
loop cycle. In this program, however, we have included
an "if" statement that will let the control break out
of the loop as soon as k > 5. The "if" statement auto-
matically includes an "else" statement, however, we
want no action in the case in which k<5 for this "if".
Therefore, we placed a "continue" statement for the
"else" option.

0XS

for

if

else
continue

break
5k

1XSXS

..101k

6XS

NOTE: The example shown above shows a very inefficient loop, since the index is
initially defined to run from 1 to 10, but then the "if" statements effectively
reduces the index range to the numbers 1 through 4. The purpose of this example
was, therefore, only to illustrate the use of the "break" and "continue" statements.
A more efficient way to program this calculation, without using "if", "break", or
"continue", is shown below:

0XS

for
1XSXS
..41k

4XS

Many numerical programs require the use of vectors and matrices, whose operation in
SMath Studio, is presented below.

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

13 / 24

Using__the__"Matrices"__palette__in__SMath__Studio__+__Matrix__operations

Following we show some examples of matrix creation and manipulation using the "Matrices"
palette in SMath Studio, as well as other matrix functions. Programming often requires
the use of one-dimensional arrays (vectors) and two-dimensional arrays (matrices).
Therefore, knowledge of the vector/matrix functions available in SMath Studio is
essential for program development.

The "Matrices" palette is shown below:

The paletted consists of 6 buttons identified as follows:

(1) Matrix (Cntl+M): enter a matrix specifying number of rows and columns
(2) Determinant: calculate the determinant of a matrix
(3) Matrix Transpose (Cntl+1): obtain the transpose of a matrix
(4) Algebraic addition to matrix: similar to minor
(5) Minor: calculates the determinant of a matrix minor
(6) Cross product: calculates the cross product of two 3-element vectors

Entering__Matrices__with__the__"Matrix"__button

Suppose we want to define two 3-element column vectors
u and v using the "Matrix" button. First, let's define
vector u by clicking in an empty section of the worksheet
and typing "u:". Then, press the "Matrix" button in the
"Matrices" palette to produce the following entry form -> ->
in which, by default, we would enter a matrix with 3 rows
and 3 columns.

Change the number of "Columns" to 1 and press the [Insert] button.
This produces the result --->

The next step is to enter the components of the vector
by clicking on the different placeholders and typing
the corresponding entries. The vectors u and v, entered
thisway, are shown to the right: ------------------------>

2

5

3

u

7

5

3

v

By using the "Matrix" button, or the command "Cntl+M", we can also define
other matrices such as the 5x4 matrix A and the 6x6 matrix B shown below.

214706

879083

786539

881686

244513

365382

B

9426

5382

5327

3074

8325

A

Calculating__the__determinant__of__matrices

To calculate the determinant of a matrix that has been already defined, such as matrices
A or B, above, click in the worksheet, then press the "Determinant" button in the "Matrices"
palette. Type the name of the matrix in the placeholder and press the equal sign (=) in
your keyboard. Here is an example: 5

106.19B

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

14 / 24

Note that an attempt to obtain the determinant of A would fail because determinants are
only defined for square matrices such as B (6x6), but not for a rectangular matrix such
as A (5x4).

Obtaining__the__transpose__of__a__matrix

To obtain the transpose of a matrix that has been already define, click on the worksheet,
then press the "Matrix Transpose" button in the "Matrices" palette. Type the name of the
matrix in the placeholder and press the equal sign (=) in your keyboard. Here are some
examples:

253
T

u 753
T

v

287823

178846

496145

705653

083818

639632

T
B

95538

43303

28272

62745

T
A

Algebraic__addition__(4)__and__Minor__(5)__buttons

The operation of these two buttons is very similar: Click in the worksheet, press button
(4) or button (5), this produces either the symbol A or the symbol M with two sub-index
placeholders and one placeholder between parentheses. Enter integer numerical values in
the sub-index placeholders, let's call them i and j. Also, enter the name of a square
matrix in the placeholder between parentheses, say, B. Symbol A produces the absolute
value of the determinant of the minor matrix of B resulting from removing row i and
column j. On, the other hand, symbol M produces the determinant of the same minor matrix.
For example, for the 6x6 matrix B defined above we have:

22763A
32
B 22763M

32
B

Getting__a__minor__matrix__(not__in__the__"Matrices"__palette)

To see the minor matrix, use the function "vminor()", available under the
"Matrix and vector" category in the function button in the SMath Studio toolbar -->
This produces a symbol M very similar to that produced with button (5) in the
"Matrices" palette, but the result is the minor matrix, rather than the
determinant of the matrix, e.g.,

21406

87983

78639

88186

36582

M
32
B

Calculating__a__cross-product

A cross product, or vector product, can be performed only on column vectors of three
elements, such as vectors u and v defined above.

To perform a cross product, click somewhere in your worksheet, and press the "Cross
product" button in the "Matrices" palette. This will produce two placeholders separated
by the multiplication symbol (x). Fill the placeholders with the name of vectors
previously defined, or insert vectors using the "Matrix (Cntl+M)" button in the "Matrices"
palette, and then enter the equal sign (=). Here are some examples:

30

27

25

vu

30

27

25

uv

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

15 / 24

Other__common__matrix__operations__(not__in__the__"Matrices"__palette)

1 - Calculating the INVERSE of a square matrix: type the matrix name and raise it to
the power -1, e.g.,

0.090.070.080.010.010.03

0.110.0300.010.160.01

0.020.030.080.050.130.07

0.020.050.070.090.040.07

0.080.030.0100.050.09

0.170.060.050.080.10.02

1
B

2 - Matrix addition, subtraction, product: simply use the same arithmetic operators
(+,-,*) as used with scalars, e.g.,

4711129

714178129

1117126114

1861233

2121325

9914354

T
BB

0931523

901843

310474

15840139

24713011

3349110

B
T

B

106417126965

41267105452341

71105264126710

2451262654099

692371407115

654109915147

T
BB

100000

010000

001000

000100

000010

000001

1
BB

T
B5B3C

4432361103

29141340421

1211210292

592422124933

6282755249

2133039394

C

, or,

3 - Creating specific types of matrices: use the following functions in the "Matrix
and vector" option under the functions button:-------------------------->

diag(v): produces a matrix whose main diagonal elements are the components of
column vector v, while all off-diagonal elements are zero, e.g.,

200

050

003

diag u

700

050

003

diag v

identity(n): produces an identity matrix of order nxn, e.g.,

1000

0100

0010

0001

identity 4

100

010

001

identity 3

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

16 / 24

matrix(n,m): produces a matrix of n rows and m columns with all its elements equal
to zero, e.g.,

0000

0000

0000

0000

matrix , 44

0000

0000

0000

matrix , 43

reverse(matrix): reverses the order of rows in matrices or vectors, e.g.,

2

5

3

u

3

5

2

reverse u

214706

879083

786539

881686

244513

365382

B

365382

244513

881686

786539

879083

214706

reverse B

submatrix(matrix,is,ie,js,je):extracts a submatrix of "matrix"
including rows is to ie, and
columns js to je, e.g.,

865

816

445

submatrix , , , , 5342B ,i.e.,

col(matrix,j): extracts column j of "matrix" as a column vector, e.g.,

0

8

3

8

1

8

col , 2B

4

3

3

0

3

col , 3A

row(matrix,i): extracts row i of "matrix" as a row vector, e.g.,

3074row , 2A 881686row , 3B

augment(m1,m2): creates a new matrix by juxtapositioning matrices
m1 and m2 by columns. Matrices m1 and m2 must have
the same number of rows, e.g.,

2

5

3

u

7

5

3

v

72

55

33

augment , vu

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

17 / 24

stack(m1,m2): creates a new matrix by juxtapositioning matrices m1 and m2 by
rows. Matrices m1 and m2 must have the same number of columns, e.g.

253
T

u 753
T

v
753

253
stack ,

T
v

T
u

4 - Functions that characterize matrices: these are functions that produce numbers that
represent some characteristics of a matrix. One such number is the determinant of a
matrix, which can be calculated using button (2) in the "Matrices" palette, or using
function "det."

The following are functions of interest, available under the "Matrix and vector"
option under the function button in the SMath Studio toolbar:

* cols(matrix): determines the number of columns in a matrix
* det(matrix): calculates the determinant of "matrix"
* el(matrix,i,j): extracts element i,j from "matrix"
* length(matrix): determines the number of elements in "matrix"

(or vector)
* max(matrix): determines the maximum value in a matrix (or vector)
* min(matrix): determines the minimum value in a matrix (or vector)
* norm1(matrix): determines the L1 norm of "matrix"
* norme(matrix): determines the Euclidean norm of "matrix"
* normi(matrix): determines the infinite norm of "matrix"
* rank(matrix): determines the rank of "matrix"
* rows(matrix): determines the number of rows of "matrix
* trace(matrix): determines the trace (sum of diagonal elements)

of a square "matrix"

Examples of these functions are shown below:

4cols A 5rows A 5
32

B <-- this is "el(B,2,3)"

36length B 9max B 8min B

30norm1 A norme A 21normi A

4rank A 2tr B

5- Operations that involve sorting by columns, rows, or sorting a vector: These operations
are also available under the "Matrix and vector" option of the function button ->

csort(matrix,j): sorts elements of column j in ascending order while dragging along the
elements in the other columns, e.g., sorting by column 3 in matrix B:

214706

879083

786539

881686

244513

365382

B

881686

879083

365382

786539

244513

214706

csort , 3B

rsort(matrix,i): sorts elements of row i in ascending order while dragging along the
elements in the other rows, e.g., sorting by row 4 in matrix B:

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

18 / 24

214706

879083

786539

881686

244513

365382

B

612074

378809

987356

688861

342154

263835

rsort , 4B

sort(vector): sorts elements of a column vector in ascending order, e.g.,

7

5

3

v

7

3

5

sort v

2

5

3

u

5

3

2

sort u

Typical__programming__steps

The following are recommended steps to produce efficient programs:

(1) Clearly define problem being solved
(2) Define inputs and outputs of the program
(3) Design the algorithm using flowcharts or pseudo-code
(4) Program algorithm in a programming language (e.g., SMath Studio programming commands)
(5) Test code with a set of known values

Errors__in__programming

Typically there are three main types of errors in developing a program:

(1) Syntax errors: when the command doesn't follow the programming language syntax.
These are easy to detect as the program itself will let you know of the syntax violations.

(2) Run-time errors: errors due to mathematical inconsistencies, e.g., division by zero.
These may be detected by the user when running the program.

(3) Logical errors: these are errors in the algorithm itself. These are more difficult to
detect, thus the need to test your programs with known values. Check every step of your
algorithm to make sure that it is doing what you intend to do.

PROGRAMMING__EXAMPLE__No.__1__-__The__Newton-Raphson__method__for__solving__ 0f x

The Newton-Raphson method used for solving an equation of the form 0f x requires

requires the knowledge of the derivative f'(x). This can be easily accomplished in SMath
Studio using the "Derivative" option in the "Functions" palette:

d

d x
f xfp x

Given an initial guess of the solution,
0

xx , the solution can be approximated by the

iterative calculation:

f'
k

x

f
k

x

k
x

1k
x

for 0k ,1, ...

εf
1k

xThe iteration continues until either the solution converges, i.e., , or a

certain large number of iterations are performed without convergence, i.e.,
max

nk

05x2
2

xExample: Solve the equation:

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

19 / 24

Solution: A graph of the function can help us find where the solutions may be located:

Define the function:

5x2
2

xf x

Produce a graph of f(x):

f x

-4 -2 0 2 4 6

24

16

8

0

-8

x

y

The graph shows solutions near x = -2 and x = 3. We can implement the solution using the
Newton-Raphson method as follows:

d

d x
f xfp x 10fp x

6
101.0εParameters of the solution are: 100nmax

Calculating__a__solution:

Starting with a guess of 2.5xG we find a solution by using the following

iterative procedure:

0k

while

xGp1xG

1kk

fp xG

f xG
xGxGp1

εf xGnmaxk

1.45xG This is the solution found

4k After this many iterations

11
102.14f xG The function at the solution point

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

20 / 24

Putting__together__a__Newton-Raphson__program

The steps listed above to calculate the solution to the equation f(x) = 0
can be put together into a function as follows:

k

f xG

xG

while

xGp1xG

1kk

fp xG

f xG
xGxGp1

εf xGnmaxk

0k

x0xG

d

d x
f xfp x

fNewton , , , Nmaxεx0f

NOTE: The output is given as a column vector of 3 elements: (1) the solution, xG, (2) the
function at the solution, f(xG), and the number of iterations needed to converge to a
solution, k.

Solving__for__a__particular__case:

5x2
2

xff x
6

101.0ε 100Nmax

Solution 1:

2.5x0

4

9
102.99

3.45

fNewton , , , Nmaxεx0ff x

Solution 2:

4

9
102.99

3.45

fNewton , , , Nmaxεx0ff x
2.2x0

Compare__with__solution__given__by____function__"solve":

1.45solve , , , 05x0ff x

3.45solve , , , 50x0ff x

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

21 / 24

Using__code__snippets

A code snippet is simply an user-defined function defined in a SMath Studio file and
placed in the "snippets" folder in the SMath Studio installation in your computer. For
example, the figure below shows the location of the "snippets" folder in a Windows 7
installation.

In my computer, for example, I have the following code snippets that I use for my courses:

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

22 / 24

The following figure shows an SMath Studio file entitled "StandardNormalCDF&ICDF.sm",
showing programs used to estimate the Cumulative Distribution Function (CDF) and the
Inverse Cumulative Distribution Function (ICDF) of the Standard Normal distribution.
This is an example of a code snipped defining two functions Φ(z), the Standard Normal
CDF, and Φinv(p), the Standard Normal ICDF.

S

Code snippets can be inserted into an SMath Studio file by first clicking on an empty
location in the workbook, and then using the option: "Tools > Snippet Manager" in the
SMath Studio toolbar.

This opens up a list of all the code snippets available in your computer. In my computer,
for example, I get the following list:

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

23 / 24

Once you select the code snippet that you want to insert, simply press the [Insert]
button.

For example, following I insert the "StandardNormalCDF&ICDF.sm"code snippet:

StandardNormalCDF&ICDF.sm

The result is a collapsed area named after the code snipped file. In this case, it is
"StandardNormalCDF&ICDF.sm". The [+] symbol located to the left of the code snippet
name indicates that the area containing the code snippet is collapsed. If you click
on the [+] symbol, the collapsed area opens up showing the contents of the code snippet.

After you have inserted a code snippet in your worksheet you can use the functions
defined in the code snippet for calculations at any location below the insertion point.
For example, the following are calculations performed using functions Φ(z) and Φinv(p):

0.8849Φ 1.2 0.1151Φ 1.2 1Φ 1.2Φ 1.2

0.2533Φinv 0.6 0.8416Φinv 0.2 1.0803Φinv 0.86

12 Jul 2012 08:09:37 - ProgrammingWithSMathStudio2012_Part1.sm

24 / 24

PROGRAMMING__EXAMPLE__No.2__-__Generalized__Newton-Raphson__method__for__a__system__of__equations

n
x

.

2
x

1
x

x

Given the system of equations: 0f1 x

0f2 x
with

...

0fn x

fn x

.

f2 x

f1 x

f xwe set up the vector equation:

n
x0

2
x0

1
x0

x0Let be an initial guess for the solution.

The generalized Newton-Raphson method indicates that we can calculate a better

approximation for the solution by using:

f
k

x
1

J
k

x
1k

x , k = 0, 1, 2, ...

d

d
j

x
fi

ji
Jwhere J is the Jacobian of the vector function, i.e.,

The Jacobian can be calculated using SMath Studio function "Jacob."

To check convergence we use the criteria:

εnorme f
1k

x

where function "norme" calculates the Euclidean norm of the function.

Also, we check for divergence by keeping the iterations to a maximum value "Nmax."

The following function "fNewtonm" performs the multi-variate Newton- Raphson calculation:

k

xG

while

xGp1xG

1kk

eval DxGxGxGp1

eval fxGJJIDxG

eval f xGfxG

eval invert JJJJI

eval fJ xGJJ

εnorme f xGNmaxk

x0xG

0k

Jacob , xsf xfJ xfNewtonm , , , , Nmaxεx0xsf x

12 Jul 2012 08:10:17 - ProgrammingWithSMathStudio2012_Part2.sm

1 / 3

In here, f(x) is a column vector function whose elements correspond to the different non-

linear equations being solved, and xs is a column vector listing the variables involved in

the equations. Function "fNewtonm" uses function "Jacob", which calculates the Jacobian

matrix for function f(x).

x0 is an intial guess to the solution, ε is the tolerance for convergence, and "Nmax" is

the maximum number of iterations allowed before cancelling solution.

Number_of_iterations

solution

k

xG
Solution is a vector:

EXAMPLE__of__"fNewtonm"__application__to__a__system__of__non-linear__equations

Solving the following pipeline-junctionsystem of equations

Q1Q10.0603HJ280

Q2Q20.0203HJ290

Q3Q30.0543HJ150

080Q3Q2Q1

Change variables to: Q1
1

x Q2
2

x Q3
3

x HJ
4

x

Re-write equationt to produce the following column vector function, fK, and the variable

list vector, xK:

80
3

x
2

x
1

x

3
x

3
x0.0543

4
x150

2
x

2
x0.0203

4
x290

1
x

1
x0.0603

4
x280

fK x

4
x

3
x

2
x

1
x

xK

10
101εUsing the following values of ε and Nmax: 20Nmax

200

0.3

0.4

0.5

x0and the initial guess: we find a solution as follows:

fNewtonm , , , , Nmaxεx0xKfK xXSol

0

200

0.3

0.4

0.5

XSol

Extracting the solutions for x:

1
XSolxsol

200

0.3

0.4

0.5

xsol

78.8

50

90

79.98

fK xsol

0

200

0.3

0.4

0.5

fNewtonm , , , , Nmaxεx0xKfK xand,

1
xsolQ1

2
xsolQ2

3
xsolQ3

4
xsolHJ

0.5Q1 (cfs) 0.4Q2 (cfs) 0.3Q3 (cfs)

and,
4

xsolHJ , i.e., 200HJ (ft)

12 Jul 2012 08:10:17 - ProgrammingWithSMathStudio2012_Part2.sm

2 / 3

Code__snippet__for__the__"fNewtonm"__function

The code snipped "fNewtonm.sm", shown below, contains the function 'fNewtonm', defined

earlier:

This code snippet is available in my "snippets" folder.

Next, we insert the code snippet "fNewtonm.sm" and repeat the solution of the system of

non-linear equations proposed earlier:

fNewtonm.sm

fNewtonm , , , , Nmaxεx0xKfK xXSol

0

200

0.3

0.4

0.5

XSol

Extracting the solutions for x:

1
XSolxsol

200

0.3

0.4

0.5

xsol

78.8

50

90

79.98

fK xsol

The solution is contained in the "xsol" vector shown above. The data for fK(x), xK, x0,

ε, and Nmax, were defined earlier.

12 Jul 2012 08:10:17 - ProgrammingWithSMathStudio2012_Part2.sm

3 / 3

Programming__Example__No.__3__-__The__Bisection__Method__for__solving__equations

The solution to the equation f(x) = 0 is the point where the graph of y = f(x) crosses the

x axis. The figure below illustrates such situation for the case of an increasing function

near the solution. To "bracket" the solution we first identify a couple of values a and b,

such that a<b and, in this case, f(a)<0 and f(b)>0. In such a situation we know that the

solution, x, is located between a and b, i.e., a < x < b.

As a first approximation to the solution we calculate the midpoint of the interval [a,b],

i.e., c = (a+b)/2. The figure above suggest two possibilities:

(i) f(c) > 0, in this case we can bracket the solution into a smaller interval by

making b = c, and calculating a new c = (a+b)/2.

(ii) f(c) < 0, in this case we can bracket the solution into a smaller interval by

making a = c, and calculating a new c = (a+b)/2.

We then repeat the process as detailed above until we find a value of c for which

|f(c)| < ε, where ε is a small number (i.e., f(c) is as close to zero as we want it).

Alternatively, we can stop the process after the number of iterations, say, k, exceeds

a given value, say, Nmax.

The process described above is a first draft of an algorithm for the so-called Bisection

Method for solving a single equation of the form f(x) = 0, for the case in which y = f(x)

is an increasing function.

For the case of a decreasing function, the figure below indicates that a solution can be

bracketed for a<b if f(a)>0 and f(b)<0. The mid point of the interval [a,b] is calculated

as before, namely, c = (a+b)/2. For this case, the figure suggests also two possibilities:

(i) f(c) < 0, in this case we can bracket the solution into a smaller interval by

making b = c, and calculating a new c = (a+b)/2.

(ii) f(c) > 0, in this case we can bracket the solution into a smaller interval by

making a = c, and calculating a new c = (a+b)/2.

Notice that, for both cases, the solution is in the interval [a,b] if f(a)*f(b) < 0, i.e.,

as long as f(a) and f(b) have opposite signs. The value of c = (a+b)/2, then replaces a or

b depending on whether f(a)*f(c) > 0 or f(a)*f(c) < 0. A new value of c = (a+b)/2 is then

calculated, and the process continued until |f(c)|<ε, or until k>Nmax.

12 Jul 2012 08:11:10 - ProgrammingWithSMathStudio2012_Part3.sm

1 / 3

The figure below summarizes the algorithm of the Bisection Method for solving equations of

the form f(x) = 0, based on the information obtained earlier for both increasing and

decreasing functions.

An implementation of this algorithm is shown below. In this program we use "strings" to

report a couple of non-solving outcomes:

(i) If the solution is not within [a,b], the initial guesses a and b are wrong,

therefore, the program indicates that the product "f(a)*f(b) must be < 0"

(ii) If there is no convergence after Nmax iterations, the program reports

"no convergence"

12 Jul 2012 08:11:10 - ProgrammingWithSMathStudio2012_Part3.sm

2 / 3

if

else

if

else

c

"no convergence"

Nmaxk

while

if

else

ca

cb

0f cf a

1kk

2

ba
c

εf cNmaxk

2

ba
c

0k

"f(a)*f(b) must be < 0"

0f bf aBisect , , , , Nmaxεbaf

85x27
2

x4
3

xf xNext we test the program for the function:

5
10εwith parameters: 10Nmax

Various selections of a and b are shown below:

8a 5b "f(a)*f(b) must be < 0"Bisect , , , , Nmaxεbaf

8a 2b 4.9473Bisect , , , , Nmaxεbaf

1a 4b 2.8018Bisect , , , , Nmaxεbaf

4a 8b 6.1445Bisect , , , , Nmaxεbaf

A plot of the function f(x) used in this case is shown below. To produce this graph,

click in a location in your worksheet, then use "Insert>Plot>2D". In the placeholder

on the lower left corner of the resulting graph type "f(x)". At first you get the

graph to the left:

f x

-8 0 8

8

4

0

-4

x

y

f x

-8 0 8

64

0

-64

x

y

The figure shows the three locations where the graph (blue line) crosses the x axis.

These are the three values found above (-4.9473, 2.8018, and 6.1445). You can adjust

the vertical scale by fist clicking on the "Scale" button (second button) in the "Plot"

palette, then click on the graph, and hold the "Cntl" key, and use the wheel in your mouse.

Roll the wheel down to increase the range in the vertical scale. The graph to the right,

above, shows the result of adjusting the vertical scale. NOTE: To adjust the horizontal

scale, use a similar procedure, but hold down the "Shift" key instead of the "Cntl" key.

12 Jul 2012 08:11:10 - ProgrammingWithSMathStudio2012_Part3.sm

3 / 3

