Introduction to Programming with SMath Studio
By Gilberto E. Urroz, October 2010 - Updated July 2012

In this section we introduce basic concepts of programming for numerical solutions
in SMath Studio.

Programming structures and flowcharts

Programming, in the context of numerical applications, simply means controlling a
computer, o other calculating device, to produce a certain numerical output. In this
context, we recognize three main programming structures, namely, (a) sequential
structures; (b) decision structures; and (c) loop structures. Most numerical
calculations with the aid of computers or other programmable calculating devices
(e.g., calculators) can be accomplished by using one of more of these structures, or
combinations of the same.

The operation of these programming structures will be illustrated by the use of flow
charts. A flow chart is just a graphical representationof the process being programmed.
It charts the flow of the programming process, thus its name. The figure below shows
some of the most commonly used symbols in flowcharts:

start/fend process input/foutput decision

In a flowchart, these symbols would be connected by arrows pointing
in the direction of the process flow.

Sequential structures

A complete programming flowchart would have start and end points,
and at least one process block in between. That would constitute
the simplest case of a sequential structure. The following figure
shows a sequential structure for the calculation of a sum:

—~—— .
i input
start dizplay
c end ab
e L
Typically, a sequential structure is shown following alcul
a vertical direction: => => => => => => => => -> -> -> -> calculate
C+ a+bd
The sequential structure shown in this flowchart can
also be represented using pseudo-code. Pseudo-code
is simply writing the program process in a manner display
resembling common language, €.g., e
Start
Input a, b
c <-a-+b
Display c
End

A flowchart or pseudo-code can be translated into code in different ways, depending

on the programming language used. In SMath Studio, this sequential structure could be

translated into the following commands:

a=2 b:=3 // Input a,b
ci=a+b // ¢ <-a+b
c=5 // Display c

Here is another example of a sequential structure in SMath Studio showing more than
one calculation step. The sequential structure in SMath Studio doesn't have to follow

a strict vertical direction, as illustrated below.

x1:==10 yli=2

x2:=5 y2i==3
Axi=x2-x1 Ax=15
Ayi=y2-yl Ay=-=5

The "line'" command and the Programming palette

A couple of examples of sequential structures were shown in the -

examples above. In SMath Studio, we can collect the calculation . =
steps under a programming line. The figure to the right -> -> -> -> if while for line
illustrate the instructions to insert a programming line in a break continue

SMath Studio worksheet. The "line" command, together with other
programming commands, is listed in the Programming palette shown.

The "line" command can be entered in one of these ways:
(a) Using "line" in the "Programming" palette
(b) Typing "line (" in the worksheet

Creating a programming line - adding entry points
By default, the "line" command produces a vertical line with two entry points or
placeholders, as shown in (1), below:

IJUU

() 2y 2

To add additional entry points, or placeholders, to a line proceed as follows:

(1) Click between the two entry points, or to the left of the line
(2) Drag down the lower right corner button that shows up
(3) A new entry point is added

Repeat steps (1) and (2) to add more entry points as needed.

Removing entry points

If you extend the programming line past the number of entries needed, you can reduce
the number of entry points by clicking on the lower right corner button, and dragging
it upwards until the entry points not needed have been removed. The figure below shows
the two steps described above.

Fill in all empty elements.
(1} (2}

Using the "line'"command

The "line" command can be used to keep together a series of commands in a sequential
programming structurein a SMath Studio Worksheet. For example, the commands calculating
Axx, Ayy, and d2, in the following listing have been placed within a programming "line":

Axx:=xA—- xB
Ayy=yA-yB

/ 2 2
d2:=Y Axx + Ayy

d2=15.81

in the example shown above, the only purpose of using the programming line is to keep
those three calculation lines together. You can then select them and move them as a
single unit. Next, we show how to use a command line for defining functions.

Defining a function with a "line'" command

SMath Studio allows the definition of functions whose body is defined by a programming s
equence. For example, the following function, f.1(x,y), is defined as a sequence
structure contained within a "line" command:

Examples of calculating with fl(x,y): f1[2 , 4)=16.12 f1(-2 , = 4)=30

f1(2,-10)=47.07 f1(-2, 10)=47.07

Here is another example of using a programming line to define a function. Function Rh(D,y)
calculates the hydraulic radius of a circular open channel given the diameter, D, and the
flow depth,y:

Rh(D, y) f:=arccos 1—2-%]
D2
A=—z—(6—sin(@-cos(@]
P=D-6
A
P

Calculating with Rh(D,vy):

Decision structure

A decision structure provides for an alternative path to the program process flow based
on whether a logical statement is true or false. As an example of a decision structure,
consider the flowchart for the function listed below:

([x+1].if x<-1

S = x—1lif x=-1

The flowchart is shown on the right.
The corresponding pseudo-code is
shown below:

start
input x
if x < -1 then
y <- |x+1|
else
y <- |x-1|
display %X,V
end
In SMath Studio a decision structure end)

is entered using the if command.
Instructions on entering the if
command are shown below:

DECISION STRUCTURE - The "if" command:

The "if" command can be entered:
(1) Using "if" in the "Programming" palette
(2) Typing "if (condition, true, false)"

if n
Using "if" in the "Programming" palette

produces these entry form: -> -> -> -> ->
else

The general operation of the "if" command is as follows:

if condition
commandys) 1
else
commandys) 2

* The "condition" is a logical statement that could be true or false.

* If "condition" is true then "command(s) 1" get(s) executed.

* If "condition" is false, then "command(s) 2", associatedwith the "else" particle
get (s)executedas default command(s) .

To illustrate the use of the if command within SMath Studio, we enter the function f (x),
defined above, as shown here:

|x+ 1|
else
| %~ 1]
A plot of this function is shown below:
Yy

3
2
1
1-4 -2 0 2 g *

f2(x)

Comparison operators and logical operators — The "Boolean" palette

Decision structures require a condition to trigger a decision on the program flow.

Such condition is represented by a logical statement. Within the context of programming
numerical calculations, a logical statement is a mathematical statement that can be
either true or false, e.g., 3>2, 5<2, etc. In SMath Studio the logical outcomes true
and false are represented by the integer values 1 and 0, respectively.

Some of the most elementary logical statements are those obtained by comparing numbers.
Comparison operators and logical operators are available in the "Boolean" palette in SMath
Studio:

Boolean

=l
> #

-

< >
AN

&Eo1a

The top line of the "Boolean" palette contains the comparison operators, while the bottom
line of the same palette contains the logical operators. The comparison operators should
be familiar to all: equal (=), less than (<), greater than (<), etc. The logical operators
are: negation (=), conjunction (and), disjunction (or), and exclusive or, or xor.

Examples of comparison operations

The following are some examples of comparison operations which resultin a logical value
of 0 or 1:

Inequalities: // true // false
Boolean equality & non-equality:

// false // true

Less-than-or-equal & Greater-than-or-equal:
// true // false

Logical operators and truth tables

The "Boolean" palette in SMath Studio includes the following four logical operations:

Boolean =

= = » = F o=

- A Y B

() @) @) 4
(1) negation (not): -(3<2)=1 =(3>2)=0
(2) conjunction (and): (3>2)A(4>3)=1 (3<2)a(4>3)=0
(3) dijunction (or): (3>2)v(5<2)=1 (3<2)v(s5<2)=0
(4) exclusive or (xor): (3<2)®(2>1)=1 (3>2)@(2>1)=0

The "negation" operator is referred to as a "unary" operator because it applies to only
one logical statement. On the other hand, the other three operators (conjunction,
disjunction, and exclusive or) are known as "binary" operators, because they require two
logical statements to operate upon.

Truth tables refer to the result of the different logical operators. For example, the
negation of a true statement is false , and vice versa. Recalling that in SMath Studio 1
stands for "true", and 0 for "false", we can show the truth tables of the four logical
operators as follows:

Negation (not) : Conjunction (and) :
m1=0 1A1=1
~0=1 -
IAN0=0
OA1=0
OAO=0
Disjunction (or) : Exclusive or (xor):
1vili=1 1®1=0
1vo=1 1®0=1
ovili=1 0®@l=1

Ovo=0 0®0=0

Examples of "if" statements with logical operations

The following function gl (x,y) is defined using the logical statement " (x<0) and (y<0)".
Evaluations of the function, and a graph of the same, are also shown below.

gl(x, y}=if(x<(ﬂA(y<O)

1(2, 0)=0
m g (’)
X +y

else
0 gl(-3,-2)=3.61

BN

I
T
1

Juni

gl(x, vy)

Nested "if" statements

If the decision tree includes more than one condition, then it may be necessary to

"nest" one "if" statement within another as illustrated in the definition of the
following function s (x,Vy) :

s(x, y):=if x>0
if y>0
A x+y
else
A2 x+y
else

A3 x+y

In this case, if the condition "x>0" is true, then it is necessary to check the inner
"if" statement, namely:

if y>0
A x+y
else

A2 x+y

whose operation was discussed earlier.

Thus, for function s(x,y), the evaluation proceeds as follows:

* if x>0 and if y>0, then s

Jx+y , €.9., s(2, 2)=2

* if x>0 and if y<0, then s = J[f2.x+y , e.9., s(3,-2)=2

* if x<0, then s = J3-x+.y , €.9., s&-z, 10)=2 , or, 30—2, —2)=2.83-i

Combining the "if" command with the "line" command
The true or false conditions in a "if" statement may lead to the execution of more than

one statement as illustrated in the following examples, where, "line" statements are used

to produce more than one operation:

case (b) : x>y, change
signs of x and y:

case (a): xx<yy,
exchange xx and yy:

Xxi= 3 yyi=4 xi= 4 yi=3
if xx<yy if x<y
temp:= xx t:=
XX=yy X=Yy
yy:=temp y=t
else else
XX'=— XX Xi== X
YY=-YVY y=-Y
xx=4 =3
vy x=-4 y=-3

If we wanted to turn this "if" statement into a function, we need to keep in mind the
fact that a function can only return a single value. To be able to return more than one
value, we need to put our results, x and y, into a column vector of two rows, e.g.,

f3(x, y):= if x<y
ti=x
Xi=y
yi=t
else
Xi=— X
yi=-y
X
Y.
Evaluations of this function follow:
Case (a), x<y: Case (b), x>vy:
4 -4
£3(3, 4)—[] £3(4, 3)—[3]

NOTE: To enter a vector you need to use the "Matrix (Cntl+M)" icon in the "Matrices"

palette. Then, enter the number of rows and columns in the resulting entry form,

and press [Insert]. (See figure below)

rIr1sert matrix ﬁ
e = Fows:
(mm oOAN MY w® Columns:
—

Insert][Cancel]

L113

L113

Then type the components of the vector or matrix in the proper placeholders.

Loop structures:

In a loop structure the process flow is repeated a finite number
of times before being send out of the loop. The middle part of
the flowchart to the right illustrates a loop structure. The
flowchart shown represents the calculation of a sum, namely,

(2)
e

Sn\t— 0, k=1

nl
S;E—
n k
k=1

The sum Sn is initialized as Sn « 0, and an index, k, is
initialized as k « 0 before the control is passed on to the k=k+1

loop. The loop starts incrementing k and then it checks if the
index k 1is larger than its maximum value n. The sum is
incremented within the loop, Sn « Sn + 1/k, and the process T
is repeated until the condition k>n is satisfied. After the @
condition in the decision block is satisfied (T = true), the F
control is sent out of the loop to the display block.
In terms of programming statements, there are two possible Sn(_5n+ l
commands in SMath Studio to produce a loop: while and for. k
The pseudo-code for a "while" loop, interpreting the flowchart
to the right, is shown below:
start '
sn <- 0 nSp
k <=0
do while ~(k>n)
s
Sn <- Sn + 1/k
end loop
display n, Sn
end

Since a "while" loop checks the condition at the top of the loop, the condition was
converted to ~ (k > n), i.e., not(k>n) = k<n

The while command in SMath Studio

The "while" command can be entered by using: while 1
(1) Using "while" in the "Programming" palette 1
(2) Typing "while (condition,body)"

The expression defining the "condition" must be modified within the "while" loop so that
an exit can be provided. Otherwise, you may end up in an infinite loop that can only
be stopped by using the "Interrupt" button in the SMath Studio menu (see below) :

SMath Studio [

:I Interrupt processing

Interrup process oK] | Cancel

button

Example: adding even numbers from 2 to 20

S00:=0 //Initialize sum (S00)
k=2 //Initialize index (k)
while k<20
S00:=S500+k //"while" loop with
ki=k+ 2 a "line" command
k=22 S00=110 //Results

This operation can be accomplished using a summation:

5= Z;(Z'H S=110

The "summation" symbol is available in the "Functions" palette.

Nested "while" loops

While loops can be nested as illustrated in the example
below (left-hand side). The corresponding double
summation is shown on the right-hand side:

Double summation with Double-summation symbol
nested "while" loops: to calculate same sum:

S01:=0 k=1 j:=1

while k<5 5 5
=1 505:= }: }: (k- 5)
while j<5 =T

S01:=S01+k j
Jj=3+1 S05=225
ki= k+ 1
S01=225

The "for" loop flowchart

The figure to the right shows an alternative flowchart
for calculating the summation:

& 1
S=Z— ———————————————————————
n k

k=1

The hexagonal symbol in the flowchart shows three
elements:

(1) the initializationof the index, k « 1;

(2) the index being incremented, k « k + 1; and,
(3) the condition checked to exit the loop, k > n.
This hexagonal symbol represents the "for" command
for this summation.

b
ﬁ:}

ket [
ke [N
+1

e f 4+

display
I‘tsn

o

The index, therefore, takes values

k = k0, kO+Ak, kO+2*Ak,.., kend,

k{_kl:l o such that k ends k £ within one Ak.
k"rﬂk kf The "range" command in SMath Studio
+

The "range" command produces a vector of indices
required for setting up a "for" loop. We describe the
"range" command first.

oop
A range represents a vector whose elements follow a
statements .)
certain pattern. Ranges can be entered as:
(1) range(start,end)
becomes: start..end (increment = 1)
(2) range(start,end,start+increment)
becomes: start, start+increment..end
@ A "range" command generates a column vector. Below, we
use transposed vectors to show ranges as row vectors:

Examples of ranges with increment of 1:

Ul

//Type "range (2,5)" to produce: rl=2 .. rlT=(2 3 4)

//Type "range (10,18)" to produce: |[r2:=10..18 T
r2 =(10 11 12 13 14 15 16 17 18)

Examples of ranges with positive increment:

Type " 2,18,4)" t duce: 3=2,4..18 T
// Type "range(2,18,4)" to produce [£3=2, | r3 =(2 468 10 12 14 16 18)

Type " 20,300,80)"t duce: [r4=20, 80 .. 300 T
// Type "range (20,300,80) "to produce: [’ [=(20 80 140 200 260)

Examples of ranges with negative increment:

// Type "range (100,20,80)"to produce: |r5:=lOO , 80 .. 20|

T
r5 =(100 80 60 40 20)
// Type "range (5,1,4)" to produce: To=5 1.1 .
r6 =(54 32 1)

The "for" command in SMath Studio

The "for" command can be entered by using: for me

(1) Using "for" in the "Programming" palette
(2) Typing "for (index, range,body)"

10
Here is an example of the "for" command in SMath Studio using the
. 503= Z 2k
range 1..10 to calculate a summation:
__ k=1
S03:= // initialize a sum (S03)
for kel ..10 //"for" loop, enter the range as:

S03:=S03+2-k //'range(1l,10)"

S03=110 // final value of S03

Nested "for" loops

As in the case of "while" loops, "for" loops can also be nested, as illustrated in the
following example that calculates a double summation:

5 5
504= Z Z (k-5)
j=1k=1
S04:= // initialize S04
for jel ..5 .
// nested "for "loops with

for kel ..5

S04:= S04+ k-3 // the same range of i and k:

// 'range (1,5)"

S04=225 // final value of S04

A programming example using sequential, decision, and loop structures

This example illustrates a program in SMath Studio that uses all three programming
structures. This is the classic “bubble” sort algorithm in which, given a vector of
values, the smallest (“lightest”) value bubbles up to the top. The program shown

uses a row vector rS, and refers to its elements using sub-indices, e.g., S[1,k], etc.
The example shows how to enter sub-indices. The output from the program is the sorted

vector rS.

r$=(5.4 1.2 3.5 10.2-2.5 4.1) // Given a vector "rS"

nS:=length (rs) nsS=6 // First, find length of vector
// Double loop that re-arranges
for kel..nS-1 .
. // order of elements in vector rS
for jek+1..nS
if rS 4 >15 // To enter sub-indices use,

temp= rS | ; // for example, rS[1l,k

rSlj:=rSlk

rS 1K= temp
else
0
rs=(-2.51.2 3.5 4.1 5.4 10.2) // Result: vector sorted

This sorting can be accomplished in SMath Studio using function "sort":

(@)

rT=(5.4 1.2 3.5 10.2-2.5 4.1) -

T
sort[rT]=

JTEET
S o= oo N

Creating a bubble sort function

The bubble-sort algorithm can be turned into a function as follows:

mySort (rS):= nS:=length (rS)
for kel..nS-1
for jek+1..nS

if rSlk>rSlj

temp:=rS 15

rSlj:=rSlk

rS 1K= temp
else
0

rS

Here is an application of this function:
rs=(5.4 1.2 3.5 10.2-2.5 4.1)

mySort (rs)=(-2.5 1.2 3.5 4.1 5.4 10.2)

The "break" and "continue" statements
These statements are available in the second line of the "Programming" palette.

* The "break" statement provides an earlier way out of a "for" loop if a condition
is detected within the loop before all the repetitions of the loop, as required
by the index definition, are completed.

* The "continue" statement basically lets the process of a program go through the
location of the statement without any action taken.

To illustrate the use of the "break" and "continue"

statements, consider the program written here: ----> X5:=0

The variables XS is first initialized as zero, then for ke 1 ..10
a for look with index k =1, 2, ..., 10, activates a XSi= XS+ 1
"for" loop, in which XS is incrementedby 1 in each Lf k> 5
loop cycle. In this program, however, we have included break
an "if" statement that will let the control break out else

of the loop as soon as k > 5. The "if" statement auto- continue
matically includes an "else" statement, however, we

want no action in the case in which k<5 for this "if". ¥S= 6

Therefore, we placed a "continue" statement for the
"else" option. . TTTTmmmmmmmmmmmmmm T
NOTE: The example shown above shows a very inefficient loop, since the index is
initially defined to run from 1 to 10, but then the "if" statements effectively
reduces the index range to the numbers 1 through 4. The purpose of this example
was, therefore, only to illustrate the use of the "break" and "continue" statements.
A more efficient way to program this calculation, without using "if", "break", or
"continue", is shown below:

for kel .. 4

Many numerical programs require the use of vectors and matrices, whose operation in
SMath Studio, is presented below.

Using the "Matrices'" palette in SMath Studio + Matrix operations

Following we show some examples of matrix creation and manipulation using the "Matrices"
palette in SMath Studio, as well as other matrix functions. Programming often requires
the use of one-dimensional arrays (vectors) and two-dimensional arrays (matrices).
Therefore, knowledge of the vector/matrix functions available in SMath Studio is
essential for program development.

The "Matrices" palette is shown below:

Matrices =
G w7 AR ME W

(@ @3 4 56

The paletted consists of 6 buttons identifiedas follows:

Matrix (Cntl+M): enter a matrix specifying number of rows and columns
Determinant: calculate the determinant of a matrix

Matrix Transpose (Cntl+1l): obtain the transpose of a matrix
Algebraic addition to matrix: similar to minor

Minor: calculates the determinant of a matrix minor

Cross product: calculates the cross product of two 3-element vectors

o U W N

Entering Matrices with the "Matrix'" button

r -
Suppose we want to define two 3-element column vectors Insert matrix Iﬁ
u and v using the "Matrix" button. First, let's define
vector u by clicking in an empty section of the worksheet Rows: B -
and typing "u:". Then, press the "Matrix" button in the Columns: 3 =
"Matrices" palette to produce the following entry form -> -> -
in which, by default, we would enter a matrix with 3 rows "] [o
and 3 columns.

Change the number of "Columns" to 1 and press the [Insert] button. 1
This produces the result —--—-—-------—---——--—-———-———~————————————————— w=|1

The next step is to enter the components of the vector
by clicking on the different placeholders and typing

the correspondingentries. The vectors u and v, entered 3 3
thisway, are shown to the right: ———==-------—-———————————— > w=(5 vi=|=5
-2 7

By using the "Matrix" button, or the command "Cntl+M", we can also define
other matrices such as the 5x4 matrix A and the 6x6 matrix B shown below.

5 _2 3 8 2 -8-3 5 -63
3 1 -5 4 4 2

-4-7 0 3
6 8 6 -1 8 8

A=[7 2 3 -5 B:=

_o_g8 3 5 9 -3-5-6 8 7
6 2 -4 9 -3 8 0 9 -78
6 0 -7 4 -12

Calculating the determinant of matrices

To calculate the determinant of a matrix that has been already defined, such as matrices

A or B, above, click in the worksheet, then press the "Determinant" button in the "Matrices"
palette. Type the name of the matrix in the placeholder and press the equal sign (=) in
your keyboard. Here is an example:

|B|=—6.19-105

Note that an attempt to obtain the determinant of A would fail because determinants are
only defined for square matrices such as B (6x6), but not for a rectangular matrix such
as A (5x4).

Obtaining the transpose of a matrix

To obtain the transpose of a matrix that has been already define, click on the worksheet,
then press the "Matrix Transpose" button in the "Matrices" palette. Type the name of the

matrix in the placeholder and press the equal sign (=) in your keyboard. Here are some
examples:
uT=(3 5-2) vT=(3—5 7) 2 3 6 9 -3 6
-8 1 8 -3 8 0
5 -4 7 -2 6 BT_ -3-5 6 -5 0 -7
AT= -2-7 2 -8 2 5 4 -1-6 9 4
3 0 3 3 -4 -6 4 8 8 -7-1
8 3 -5 5 9 3 2 8 7 8 2

Algebraic addition (4) and Minor (5) buttons

The operation of these two buttons is very similar: Click in the worksheet, press button
(4) or button (5), this produces either the symbol A or the symbol M with two sub-index
placeholders and one placeholder between parentheses. Enter integer numerical values in
the sub-index placeholders, let's call them i and j. Also, enter the name of a square
matrix in the placeholder between parentheses, say, B. Symbol A produces the absolute
value of the determinant of the minor matrix of B resulting from removing row i and
column j. On, the other hand, symbol M produces the determinant of the same minor matrix.
For example, for the 6x6 matrix B defined above we have:

A, 5(B)=22763 M, 5 (B)=-22763

Getting a minor matrix (not in the "Matrices'" palette)

To see the minor matrix, use the function "vminor ()", available under the
"Matrix and vector" category in the function button in the SMath Studio toolbar --> fix)
This produces a symbol M very similar to that produced with button (5) in the

"Matrices" palette, but the result is the minor matrix, rather than the

determinant of the matrix, e.qg.,

2 -8 5 -63
6 8 -1 8 8

M, (B)=| 9 -3-6 8 7
-3 8 9 -738

6 0 4 -12

Calculating a cross-product

A cross product, or vector product, can be performed only on column vectors of three
elements, such as vectors u and v defined above.

To perform a cross product, click somewhere in your worksheet, and press the "Cross
product" button in the "Matrices" palette. This will produce two placeholders separated
by the multiplicationsymbol (x). Fill the placeholders with the name of vectors
previously defined, or insert vectors using the "Matrix (Cntl+M)" button in the "Matrices"

palette, and then enter the equal sign (=). Here are some examples:
25 -25
ux v=|-27 vxu=| 27

- 30 30

Other common matrix operations (not in the "Matrices" palette)

1 - Calculating the INVERSE of a square matrix: type the matrix name and raise it to
the power -1, e.qg.,

0.02 -0.1 0.08 -0.05-0.06 0.17
-0.09-0.05 0 -0.01 0.03 0.08
.07 -0.04 0.09 -0.07-0.05-0.02
.07 0.13 0.05 -0.08-0.03-0.02
.01 0.16 0.01 0 -0.03-0.11
.03 0.01 -0.01 0.08 0.07 -0.09

o O O O

2 - Matrix addition, subtraction, product: simply use the same arithmetic operators
(+,-,*) as used with scalars, e.qg.,

4 -5 3 14 -9 9 0 117 9 4 3 3
-5 2 3 1 12 2 -11 0 13-7 4 =2
T 3 3 12 -6 8 1 T -9 -13 0 -4 -8-15
B+B = B -B=
14 1 -6-12 17 11 -4 7 4 0 1 -3
-912 8 17 -14 7 -3 -4 8-10 -9
9 2 1 11 7 4 -3 2 15 3 9 0
147 15 -99 0 41 65 1 00000O
15 71 40 71 23 69 010000
T |-99 40 265 126 45 =2 -1 1001000
BB = BB =
0 71 126 264 -105 71 000100
41 23 45 -105 267 41 000010
65 69 -2 71 41 106 000O0O0T1

-4-39-39-30 -3 =21
49 -2 -55 27 -28 6
33 49 -12 22 24 59
2 -29-10 12 -21 1
21 4 -40-13 14 29
3 -10-61-23-43 -4

T
C=3B-5B , or,

3 - Creating specific types of matrices: use the following functions in the "Matrix
and vector" option under the functions button:------———-------—-----—————— > fea

diag(v): produces a matrix whose main diagonal elements are the components of
column vector v, while all off-diagonal elements are zero, €.g.,

30 0 30 0
diag(u)=|0 5 0 diag(v)=|0 -5 0
00-2 00 7

identity(n) : produces an identity matrix of order nxn, e.qg.,

1
identity(3)=|0 identity(4)=
0

o - O
= O O

o O O
o O O
o - O O
= O O O

matrix (n,m) : produces a matrix of n rows and m columns with all its elements equal
to zero, e.qg.,

matrix(3 , 4)= matrix(4 , 4)=

o O O
o O O
o O O
o O O
o O O O
o O O O
o O O O
O O O O

reverse (matrix) : reverses the order of rows in matrices or vectors, e.g.,

3 -2
u=| 5 reverse(u)= 5
-2 3

2 -8-3 5 -6
3 1 -5 4 4
6 8 6 -1 8
9 -3-5-6 8
-3 8 0 9 -7
6 0 -7 4 -1

6 0 -7 4 -1
-3 8 0 9 -7
9 -3-5-6 8
6 8 6 -1 8
3 1 -5 4 4
2 -8-3 5 -6

reverse(B)=

N o J o N W

w N o 3 0o N

submatrix (matrix,is,ie, js, je) :extracts a submatrix of "matrix"
including rows is to ie, and
columns js to Jje, e.g.,

[z -8-3 5 -¢'3

-5 4 4 @ 3 —5 4 4|z
submatrix(B, 2, 4, 3, 5)=| 6 -1 8 pieen, | |8 8|6 -1 8|8
-5-68 ~ |8 —3]-5-6 8|7

-3 8|0 g -7|=8

& -7 4 -1|2

col (matrix, j): extracts column j of "matrix" as a column vector, e.qg.,

3 _18

0 8

col(A, 3)= 3 col(B, 2)= _3
_34 8

0

row (matrix, i) : extracts row i of "matrix" as a row vector, e.g.,

row (A, 2)=(-4 -7 0 3) row(B, 3)=(6 8 6 -1 8 §)

augment (ml,m2) : creates a new matrix by juxtapositioningmatrices
ml and m2 by columns. Matrices ml and m2 must have
the same number of rows, e.qg.,

3 3 3 3
u=| 5 v=|-5 augment(u, v)= 5 -5
-2 7 -2 7

stack (ml,m2) : creates a new matrix by juxtapositioningmatrices ml and m2 by
rows. Matrices ml and m2 must have the same number of columns, e.g.

T T
u =(3 5—2) v =(3—5 7) stack[uT, VT]=

3 5 -2
3-5 7

4 - Functions that characterize matrices: these are functions that produce numbers that
represent some characteristics of a matrix. One such number is the determinant of a
matrix, which can be calculated using button (2) in the "Matrices" palette, or using
function "det."

The following are functions of interest, available under the "Matrix and vector"
option under the function button in the SMath Studio toolbar:

i)

* cols (matrix) : determines the number of columns in a matrix
* det (matrix) : calculates the determinant of "matrix"
* el (matrix,i,J) : extracts element i,j from "matrix"
* length (matrix) : determines the number of elements in "matrix"

(or vector)
* max (matrix) : determines the maximum value in a matrix (or vector)
* min(matrix) : determines the minimum value in a matrix (or vector)
* norml (matrix): determines the L1 norm of "matrix"
* norme (matrix): determines the Euclidean norm of "matrix"
* normi (matrix): determines the infinite norm of "matrix"
* rank (matrix): determines the rank of "matrix"
* rows (matrix): determines the number of rows of "matrix
*

trace (matrix) : determines the trace (sum of diagonal elements)
of a square "matrix"

Examples of these functions are shown below:

cols(n)=4 rows (A)= 5 B,43=-5 <-- this is "el(B,2,3)"
length (B)= 36 max (B)= 9 min (B)=— 8

norml (A)= 30 norme (A)= 1 normi (A)= 21

rank(A)= 4 tr(B)=—2

5- Operations that involve sorting by columns, rows, or sorting a vector: These operations
are also available under the "Matrix and vector" option of the function button -> fi)

csort (matrix, j) : sorts elements of column j in ascending order while dragging along the
elements in the other columns, e.g., sorting by column 3 in matrix B:

2 -8-3 5 -6
3 1 -5 4 4
6 8 6 -1 8
9 -3-5-6 8
-3 8 0 9 -7
6 0 -7 4 -1

6 0 -7 4 -1
3 1 -5 4 4
9 -3-5-6 8
2 -8-3 5 -6
-3 8 0 9 -7
6 8 6 -1 8

csort (B , 3)=

N o J o N W

O 0 W I N N

rsort (matrix, i) : sorts elements of row i in ascending order while dragging along the
elements in the other rows, e.g., sorting by row 4 in matrix B:

2 -8-3 5 -6 3 5 -3-83-6 2

3 1 -54 4 2 4 -5 1 2 4 3
B 6 8 6 -1 8 8 rsort (B 4)=—1 6 8 8 8 6
9 -3-5-6 8 7 ! -6-5-37 8 9
-3 8 0 9 -78 9 0 8 8-7-3
6 0 -7 4 -12 4 -7 0 2-1 6

sort (vector) : sorts elements of a column vector in ascending order, e.qg.,

3 -5 3 -2
v=|-5 sort()= 3 u=| 5 sort()= 3
7 7 -2 5

Typical programming steps

The following are recommended steps to produce efficient programs:

) Clearly define problem being solved

) Define inputs and outputs of the program

) Design the algorithm using flowcharts or pseudo-code

) Program algorithm in a programming language (e.g., SMath Studio programming commands)
) Test code with a set of known values

a s w N

Errors in programming

Typically there are three main types of errors in developing a program:

(1) Syntax errors: when the command doesn't follow the programming language syntax.
These are easy to detect as the program itself will let you know of the syntax violations.

(2) Run-time errors: errors due to mathematical inconsistencies, e.g., division by zero.
These may be detected by the user when running the program.

(3) Logical errors: these are errors in the algorithm itself. These are more difficult to
detect, thus the need to test your programs with known values. Check every step of your
algorithm to make sure that it is doing what you intend to do.

PROGRAMMING EXAMPLE No. 1 - The Newton-Raphsonmethod for solving f(x)=0
The Newton-Raphsonmethod used for solving an equation of the form f(X)E 0 requires

requires the knowledge of the derivative f'(x). This can be easily accomplished in SMath
Studio using the "Derivative" option in the "Functions" palette:

d
fp(x)=—1(x)
dx
Given an initial guess of the solution, x=x 0’ the solution can be approximated by the
iterative calculation:
£
X X, =
k+1 kg1 [x k]

for k=0 ,1,

f[x k+ 1]|<S , Or a

certain large number of iterations are performed without convergence, i.e., k>n nax

The iteration continues until either the solution converges, i.e.,

2
Example: Solve the equation: x =2-x=-5=0

Solution: A graph of the function can help us find where the solutions may be located:
Define the function:

f(x):=x2—2-x—5

Produce a graph of f(x):

Yy
b4
-4 -2 0 2 |
£ (x)
The graph shows solutions near x = -2 and x = 3. We can implement the solution using the
Newton-Raphsonmethod as follows:
d
fp (%)= — £ (x) fp(x)=-10
dx

-6
Parameters of the solution are: e:=1.0-10 nmax:= 100

Calculating a solution:

Starting with a guess of xXG==2.5 we find a solution by using the following
iterative procedure:

k=0

while [(ks nmax)/\“ f (xG)|> s]]

f(xG)
xGpli= xG- ——
fp(xG)
ki=k+1
xG= xGpl
xG=-1.45 This is the solution found
k=14 After this many iterations

-11
f(xG)= 2.14-10 The function at the solution point

Putting together a Newton-Raphson program

The steps listed above to calculate the solution to the equation f(x) = 0
can be put together into a function as follows:

fNewton(f, x0, ¢, Nmax):= fp(x)::if(x)
d x
xGi= x0
k=0
while [(ks nmax)/\“ £ (xG)|> s]]
f (xG)
xGpli= xG- ———=
fp(x0)
ki=k+1
xG=xGpl
xG
f (xG)
k

NOTE: The output is given as a column vector of 3 elements: (1) the solution, xG, (2) the
function at the solution, f(xG), and the number of iterations needed to converge to a
solution, k.

Solving for a particular case:

2 -6
£FE(x)=x “-2-x-5 e=1.0-10 Nmax=100

Solution 1:

x0:=2.5 345
fNewton(ff(x), x0, ¢, Nmax)= 2.99-10_9
4
Solution 2:
o 2 3.45
fNewton(ff(x), x0, ¢, Nmax)= 2.99-10_9
4

Compare with solution given by function "solve':

0

solve(ff(x)=0, x, -5, 0)=—1.45

solve(ff(x)=0, x, 0, 5)=3.45

Using code snippets

A code snippet is simply an user-defined function defined in a SMath Studio file and

placed in the "snippets" folder in the SMath Studio installation in your computer.

For

example, the figure below shows the location of the "snippets" folder in a Windows 7

installation.

— e
@U'| || C:\Program Files (86)\SMath\SMath Studio | 43| | Search SMath Studio)
File Edit VWiew Tools Help
Organize - = Open Include in library - Share with = Burn = = = [1@
= Mame # Date modified i
e | book 6/25/2012 6:59 PM
E Documents | R entries 6/25/2012 6:59 PM
< T | EULA 6/25/2012 6:59 PM
(&) Pictures i examples 6/25/2012 6:59 PM |2
1 Femah = | lang 6/25/2012 6:59 PM
B Videos | plugins 6/25/2012 6:59 PM
| snippets 6,/25/2012 6:59 PM
o odtieai i T |8 canvas.dil 6/25/2012 1:41 AM | |
o Compute %] ioman.dil 6/25/2012 1:41 AM
: = %) NuLib.dll 6/25/20121:41 AM
A8 mm o a - FLa TR o TP Y) i 1 | m 4
. snippets
File folder
Date modified: 6/25/2012 6:59 PM
e

In my computer, for example, I have the following code snippets that I use for my courses:

@U'| || C:\Program Files (x86)\SMath\SMath Studio\snippets v | 4 | | Search snippets P

File Edit View Tools Help

B 0 @

Organize - Include in library - Share with = Burn Mew folder

i=_5] Documents

J? Music
[Pictures
? Podcasts

™ videos

iSiDegresAngles.sm
iSifBroydenm.sm

iSifNewtonm.sm

iS5 GradAngles.sm

S GVF.sm
iSiHaaland&SwameelainEquations.sm
iSiHaaland&SwameelainUpdated.sm
iSLinearDataFit.sm

iS5y PipeMNetworkK&nFunctions.sm

S RungeKuttadthForFirstOrderODE.sm
'\5' secant.sm

iS5y standardNormal CDFRICDF.sm

#4 Homegroup

m

Lol Computer
&, 05 (@)
% BD-ROM Drive (O:) DISC_4_SE*
% Public (\\UrrozMyBookllve) (2

The following figure shows an SMath Studio file

entitled "StandardNormalCDF&ICDF.sm",

showing programs used to estimate the Cumulative Distribution Function (CDF) and the

Inverse Cumulative Distribution Function (ICDF)
This is an example of a code snipped defining t
CDF, and ®inv (p), the Standard Normal ICDF.

of the Standard Normal distribution.
wo functions ®(z), the Standard Normal

'S SMath Studio - [StandardNormalCDF&ICDF.sm] - o)
File Edit View Insert Calculation Tools Pages Help = [E
TmES B 0w -A90"E: (wFH G
-
Standard normal CDF & (z) and its inverse ®#inv(p): B
-1
Function #({z) and its inverse #invip) = & {ip}), 0 < p < 1, Aare
defined in the following 5Math Studio programs:
2 (z)=]=:=|z| 2inv(p)=|F(x)= 0.2316419
0.2316415 0.319381530 3
0.319381530 - —0.356563782
g .| 0-356563782 | 1.781477937
| 1.781477937 —-1.821255978
—1.821255978 1.330274429
1.330274429 2
2 Tii= 1 ‘e XD S
= e, o -
1 2 Z
o] 2 2
2 =
2o s
T 1 1+b 1-:-:
l1+b '3
1 L
1 b E
2 K S I LI
wWwi=l-—1x" Z h]{+llt k=1
k=1 if p<0.5
if z=0 d=1-p
W else
else a=p
1-w .3:=.3r:u'_'-.rn=_-[F|:z:|=q,z,—4,4]
if p<0.5
—-=
else
=
1 | I 3
Ready €4, (100%) -

Code snippets can be inserted into an SMath St
location in the workbook, and then using the o
SMath Studio toolbar.

This opens up a list of all the code snippets
for example, I get the following list:

udio file by first clicking on an empty
ption: "Tools > Snippet Manager" in the

available in your computer. In my computer,

-

Snippet Manager ﬁ

Available snippets:
Evaluation in Degrees

L83 StandardNormalCDFICDF sm
Evaluation in Grads
fBroydenm.sm o
fMNewtonm.sm Description:
GVF.sm

Haaland&SwameeJainEquations.sm
Haaland&5SwameeJainUpdated .sm
LinearDataFit.sm
PipeMetwork K&n Functions sm
RungeKuttadth ForFirstOrderDDE sm
secant.sm . :
e

Author (Company) / Translation:

Insert snippet inside Area Region [

Insert] [Cancel

Once you select the code snippet that you want to insert, simply press the [Insert]
button.

For example, following I insert the "StandardNormalCDF&ICDF.sm"code snippet:

[F—StandardNormalCDF&ICDF. smr

The result is a collapsed area named after the code snipped file.

In this case, it is
"StandardNormalCDF&ICDF.sm". The [+]

symbol located to the left of the code snippet
name indicates that the area containing the code snippet is collapsed.

If you click
on the [+]

symbol, the collapsed area opens up showing the contents of the code snippet

After you have inserted a code snippet in your worksheet you can use the functions
defined in the code snippet for calculations at any location below the insertion point.

For example, the following are calculations performed using functions ®(z) and ®inv (p) :

®(1.2)=0.8849 ®(1.2)=0.1151 o(1.2)+o(1.2)=1

®inv(0.6)=0.2533 ®inv(0.2)=-0.8416 ®inv(0.86)=1.0803

PROGRAMMING EXAMPLE No.2 - Generalized Newton-Raphsonmethod for a system of equations

X

Given the system of equations: f1(x)=0 1
x
= =72
£2(x)=0 with x=
x
fn(x)=0 n
£1(x)
we set up the vector equation: f(x): f2 (X)
fn(x)
x0 1
Let 4o= %0 2 be an initial guess for the solution.
]
%0
n

The generalized Newton-Raphsonmethod indicates that we can calculate a better
approximation for the solution by using:

. . , . d
where J is the Jacobian of the vector function, i.e.,|J 5 j= 7 fi
X .
J

The Jacobian can be calculatedusing SMath Studio function "Jacob."

To check convergence we use the criteria:

norme [f[x K+ l]]s €

where function "norme" calculates the Euclidean norm of the function.

Also, we check for divergence by keeping the iterations to a maximum value "Nmax."

The following function "fNewtonm" performs the multi-variate Newton- Raphson calculation:

fNewtonm (f(x) , xs, x0, ¢, Nmax]:= £J(x):= Jacob (f(x) , xs)
k=0

xG=x0

while [(ks Nmax)/\(norme (f (xG))> s]]
JJ:=eval (£7(xG))
JJI=eval(invert (7J))
fxG=eval (f (xG))
DxG=eval(JJI- £xG)
xGpl:=eval (xG— DxG)
ki=k+1

xG= xGpl

xG

In here, f(x) is a column vector function whose elements correspond to the different non-

linear equations being solved, and xs is a column vector listing the variables involved in
the equations. Function "fNewtonm" uses function "Jacob", which calculates the Jacobian

matrix for function f (x).

x0 is an intial guess to the solution, € is the tolerance for convergence, and "Nmax" is
the maximum number of iterations allowed before cancelling solution.

solution l

. . G
Solution is a vector: 12 i)
Number of iteration

=

EXAMPLE of "fNewtonm" application to a system of non-linear equations

Solving the following pipeline-junctionsystem of equations

280-HJ=0.0603 Q101

290-HJ=0.0203 0202

150- HJ=0.0543 Q3| Q3|
Q1+ Q2+ Q3-80=0

Change variables to: x 1= 01 X 5= 02 x 3= 03 X ,= HJ

Re-write equationt to produce the following column vector function, fK, and the variable
list vector, xK:

280—x4—0.0603-x1-|x1| x4
(o) 29O—x4—0.0203-x2-|x2| e X,
15O—x4—0.0543-x3-|x3| X3
xl+x2+x3—80 %
Using the following values of ¢ and Nmax: g=1-10 10 Nmax:= 20
0.5
and the initial guess: x0:= gi we find a solution as follows:
200

XSol:= fNewtonm (fK(x) , xK, x0, ¢, Nmax)

0.5
Extracting the solutions for x: 0.4
XSol=[|0.3
200
xsol:= XSol 1 0.5 0
xsol= 0.4
0.3 79.98
200 fK(xsol)= 20
-50
-78.8 0.5
0.4
and, fNewtonm(fK(x) , XK, x0, ¢, Nmax)= 0.3
Ql:==xsol 1 Q2:= xsol2 Q3= xsol 3 HJ:= xsol 4 200
[01=0.5 | [(cfs)] [02=0.4 | [(cts)] [03=0.3 | [(ces)]' ©
and, HJ= xsol , i.e., [HJ=200 | [(ft)]

4

Code snippet for the "fNewtonm" function

The code snipped "fNewtonm.sm", shown below, contains the function 'fNewtonm', defined
earlier:

S} SMath Studio - [NewtonmemlT T Lo | B)

File Edit View Inset Calculation Tools Pages Help e
T mES Died 0 -A9O0O/"5F |m¥PH G
i .
fNewtom‘u[f (z), =s, =0, &, Nmax]== £J(x)=Jacob [f (=), xs]
k=0
xE=x0

m

while [(kﬂﬂmax]ﬂ[nnrme [f |::-:G:|]:=- E]]
JJ=eval [£J(xG)|

JJI=ewval [i nvert |:JJ:|]
fxG=ewval [f Iix G]]

DxG=eval (JJI £xG)
xGpl=ewval Iix G- DxG]

kE=k+1

xG=x6Gpl

xG
k

1 | m 3

Ready C'mﬂ-m%:' S

L.

This code snippet is available in my "snippets" folder.

Next, we insert the code snippet "fNewtonm.sm" and repeat the solution of the system of
non-linear equations proposed earlier:

[Fl— fNewtonm. sm

XSol:= fNewtonm (fK(x) , xK, x0, ¢, Nmax)

0.5
Extracting the solutions for x: 0.4
XSol=[|0.3
200
xsol:==XSol 1 0.5 0
xsol= 0.4
0.3 79.98
200 fK(xsol)= 20
-50
-78.8

The solution is contained in the "xsol" vector shown above. The data for fK(x), xK, x0,
¢, and Nmax, were defined earlier.

Programming Example No. 3 - The Bisection Method for solving equations

The solution to the equation f(x) = 0 is the point where the graph of y = f(x) crosses the
X axis. The figure below illustrates such situation for the case of an increasing function
near the solution. To "bracket" the solution we first identify a couple of values a and b,
such that a<b and, in this case, f(a)<0 and f(b)>0. In such a situation we know that the
solution, x, is located between a and b, i.e., a < x < b.

at+b
y Increasing function = y increasing function
y = fix) y = fix)
fa)fic) <0 / f(a)*fc) = 0
bec a=-c

fic) > 0 f(b) > 0

, .d/d\'c fib) = 0
| /! | I
C

[
0
< b ffa) < 0 fic) < b

fla) < 0

As a first approximation to the solution we calculate the midpoint of the interval [a,b],

i.e., ¢ = (at+b)/2. The figure above suggest two possibilities:
(1) f(c) > 0, in this case we can bracket the solution into a smaller interval by
making b = ¢, and calculating a new ¢c = (a+b)/2.

(ii) f(c) < 0, in this case we can bracket the solution into a smaller interval by
making a = ¢, and calculating a new c = (a+b)/2.

We then repeat the process as detailed above until we find a value of ¢ for which
|[f(c)| < g, where ¢ is a small number (i.e., f(c) is as close to zero as we want it).

Alternatively, we can stop the process after the number of iterations, say, k, exceeds
a given value, say, Nmax.

The process described above is a first draft of an algorithm for the so-called Bisection
Method for solving a single equation of the form f(x) = 0, for the case in which y = f (x)
is an increasing function.

For the case of a decreasing function, the figure below indicates that a solution can be
bracketed for a<b if f(a)>0 and f (b)<0. The mid point of the interval [a,b] is calculated

as before, namely, ¢ = (a+b)/2. For this case, the figure suggests also two possibilities:
(1) f(c) < 0, in this case we can bracket the solution into a smaller interval by
making b = ¢, and calculating a new ¢c = (a+b)/2.

(ii) f(c) > 0, in this case we can bracket the solution into a smaller interval by
making a = ¢, and calculating a new ¢ = (a+b)/2.

Notice that, for both cases, the solution is in the interval [a,b] if f(a)*f(b) < 0, i.e.,
as long as f(a) and f(b) have opposite signs. The value of ¢ = (a+b)/2, then replaces a or
b depending on whether f(a)*f(c) > 0 or f(a)*f(c) < 0. A new value of ¢ = (a+b)/2 is then

calculated, and the process continued until |[f(c) |<e, or until k>Nmax.

a+hb
o=

y decreasing function i y decreasing function
y = fix) y = fix)
S
b fla) >0 b
fla) >0 fic) » ﬂ\

[+ -
.i_n
=
oy —
5 —

=

fic) <0 fib) <0 f(b) < 0

fla)*fic) <0

fla)*fic) = 0
b<c

a<cC

The figure below summarizes the algorithm of the Bisection Method for solving equations of

the form f(x) = 0, based on the information obtained earlier for both increasing and
decreasing functions.

THE BISECTION METHOD FOR SOLVING f(x) =0

* Start with values of a and b such that f(a)*f(b) <0
"k=0
* Calculate c = (a+b)2
= k=k+1
*if k < nmax continue, else stop and report
*If If{c)| = £, convergence achieved - solution

*If f(a)*f(c) < O then

makeb=c
otherwise
makea=c
1

An implementationof this algorithm is shown below. In this program we use "strings" to
report a couple of non-solving outcomes:

(1) If the solution is not within [a,b], the initial guesses a and b are wrong,
therefore, the program indicates that the product "f (a)*f (b) must be < 0"

(1ii) If there is no convergence after Nmax iterations, the program reports
"no convergence"

Bisect(f, a, b, ¢, Nmax):=|if f£(a) £(b)>0

"f(a)*f(b) must be < 0"
else
k=0

a+b

2

while(k<NmaﬂA“f(cH>s]
a+b

if f(a) £(c)<0
b=—c
else
a=c
if k> Nmax
"no convergence"
else
c

3 2
Next we test the program for the function: f(x}=x -4-x -27 x+85

with parameters: e=10 Nmax:= 10

Various selections of a and b are shown below:

a=-8 bi=-5 Bisect(f, a, b, £, Nmax)="f (a) *f (b) must be < 0"
a=-8 bi=-2 Bisect(f, a, b, ¢, Nmax)=—4.9473
a=1 b:=4 Bisect(f, a, b, ¢, Nmax)=2.8018
a=4 b:=8 Bisect(f, a, b, ¢, Nmax)=6.1445

A plot of the function f(x) used in this case is shown below. To produce this graph,
click in a location in your worksheet, then use "Insert>Plot>2D". In the placeholder
on the lower left corner of the resulting graph type "f(x)". At first you get the
graph to the left:

y y

The figure shows the three locations where the graph (blue line) crosses the x axis.

These are the three values found above (-4.9473, 2.8018, and 6.1445). You can adjust

the vertical scale by fist clicking on the "Scale" button (second button) in the "Plot"
palette, then click on the graph, and hold the "Cntl" key, and use the wheel in your mouse.
Roll the wheel down to increase the range in the vertical scale. The graph to the right,
above, shows the result of adjusting the vertical scale. NOTE: To adjust the horizontal
scale, use a similar procedure, but hold down the "Shift" key instead of the "Cntl" key.

