The 4 th -order Runge-Kutta method for a 2 nd order ODE
By Gilberto E. Urroz, Ph.D., P.E. January 2010

Problem description

Consider the 2 nd-order ODE:

$$
y^{\prime \prime}+y \cdot y^{\prime}+3 \cdot y=\sin (x)
$$

subject to the initial conditions: $y(0)=-1 \quad y^{\prime}(0)=1$

Variable substitution to form a system of ODEs:

This 2nd-order ODE can be converted into a system of two 1st-order ODEs by using the following variable substitution:

$$
u_{1}=y \quad u_{2}=y^{\prime}
$$

with initial conditions:
$u_{1}=-1$ and
$u_{2}=1$
at $x=0$.

The variable substitution $u_{2}=y^{\prime}$ is equivalent to:

$$
\frac{d}{d x} u_{1}=u_{2}
$$

[Eq. 1]
while the ODE is re-written as: $y^{\prime \prime}=-y^{\prime} y^{\prime}-3 \cdot y+\sin (x)$
or:

$$
\frac{d}{d x} u_{2}=-u_{1} \cdot u_{2}-3 \cdot u_{1}+\sin (x)
$$

[Eq. 2]

The system of equations [Eq. 1] and [Eq. 2] is transformed into the vector ODE:

$$
\frac{d}{d x}\binom{u_{1}}{u_{2}}=\binom{u_{2}}{-u_{1} \cdot u_{2}-3 \cdot u_{1}+\sin (x)}
$$

or,

$$
\begin{aligned}
& \frac{d}{d x} u=f(x, u), \text { where } u=\binom{u_{1}}{u_{2}} \text { and } \\
& f(x, u)=\binom{u_{2}}{-u_{1} \cdot u_{2}-3 \cdot u_{1}+\sin (x)}
\end{aligned}
$$

The initial conditions are us=($\left.\begin{array}{c}-1 \\ 1\end{array}\right)$ at $x s=0$
We'll solve the ODEs in the interval: $0 \leq x \leq 20$ using 100 intervals.

First, define the vector function $f(x, u)$:

$$
f(x, u):=\binom{u_{2}}{-u_{1} \cdot u_{2}-3 \cdot u_{1}+\sin (x)}
$$

The initial conditions are:

$$
x s:=0
$$

$$
\text { us:=(} \left.\begin{array}{c}
-1 \\
1
\end{array}\right)
$$

The end of the solution interval is: $\mathrm{xe}:=20$
Use 100 intervals: $n:=100$
Calculate the increment size, Δx :

$$
\Delta x:=\operatorname{eval}\left(\frac{x e-x s}{n}\right)
$$

Create the x solution vector:
$\Delta x=0.2$

$$
x s o l:=\operatorname{eval}(x s, x s+\Delta x \ldots x e)
$$

The y-solution vector gets initialized as follows:
usol:= us

$$
\text { usol }=\binom{-1}{1}
$$

The following "for" loop calculates the Runge-Kutta algorithm (version 1) to produce the solution:

```
for k\in1..n
    x0:= eval(xsol k)
    u0:= eval (col (usol, k))
    xM:= eval (x0+\frac{1}{2}\cdot\Deltax)
    K1:= eval (\Deltax\cdotf(x0,u0))
    uM:= eval (u0+\frac{1}{2}\cdotK1)
    K2:= eval ( }\Deltax\cdotf(xM,uM)
    uM:= eval(u0 +\frac{1}{2}\cdot\textrm{K}2)
    K3:= eval (\Deltax\cdotf(xM,uM))
    u1:= eval (u0+K3)
    x1:= eval(xsol k+1)
    K4:= eval (\Deltax·f(x1, ul))
    u1:= eval (u0+\frac{1}{6}\cdot(k1+2\cdotk2+2\cdotk3+K4))
    usol:= augment (usol, ul)
```

After completing the iterative process, the solution is stored in a row vector called "ysol". This vector can be transposed to put together the graph of the two solutions as illustrated here:

$$
\text { usol:= usol }{ }^{\mathrm{T}}
$$

M1:= augment (xsol, col (usol, 1))
M2:= augment (xsol, col (usol, 2))

The blue line represents $u[1]=y$ while the red line represents $u[2]=d y / d x$.

Solution (version 2):

First, define the vector function $f(x, y)$:

$$
f(x, u):=\binom{u_{2}}{-u_{1} \cdot u_{2}-3 \cdot u_{1}+\sin (x)}
$$

The initial conditions are:

$$
x s:=0 \quad \text { us: }=\binom{-1}{1}
$$

The end of the solution interval is:
$x e:=20$
Use 100 intervals:

$$
n:=100
$$

Calculate the increment size, Δx :

$$
\Delta x:=\operatorname{eval}\left(\frac{x e-x s}{n}\right)
$$

$$
\Delta x=0.2
$$

Create the x solution vector:

$$
x s o l:=\operatorname{eval}(x s, x s+\Delta x \ldots x e)
$$

The y-solution vector gets initialized as follows:
usol:= us

$$
\text { usol }=\binom{-1}{1}
$$

The following "for" loop calculates the Runge-Kutta algorithm (version 1) to produce the solution:

```
for ke1..n
    x0:= eval(xsol k)
    u0:= eval(col(usol, k))
    x13:= eval}(x0+\frac{1}{3}\cdot\Deltax
    x23:= eval (x0+\frac{2}{3}\cdot\Deltax)
    K1:= eval(\Deltax\cdotf(x0,u0))
    u13:= eval}(u0+\frac{1}{3}\cdot\textrm{K}1
    K2:= eval(\Deltax\cdotf(x13, u13))
    u23:= eval(u13+\frac{1}{3}\cdotk2)
    K3:= eval(\Deltax\cdotf(x23,u23))
    u1:= eval(u0 + K1 - K2 + K3)
    x1:= eval(xsol k+1)
    K4:= eval (\Deltax.f(x1, ul))
    u1:= eval (u0+\frac{1}{8}\cdot(k1+3\cdotK2+3\cdotk3+K4))
    usol:= augment(usol, ul)
```

After completing the iterative process, the solution is stored in a row vector called "ysol". This vector can be transposed to put together the graph of the two solutions as illustrated here:

$$
\begin{aligned}
& \text { usol:= usol }{ }^{T} \\
& \text { N1:= augment }(x s o l, \operatorname{col}(\text { usol }, 1)) \\
& N 2:=\operatorname{augment}(x s o l, \operatorname{col}(\text { usol }, 2))
\end{aligned}
$$

$\left\{\begin{array}{l}\mathrm{N} 1 \\ \mathrm{~N} 2\end{array}\right.$

The blue line represents u[1]=y while the red line represents $u[2]=d y / d x$.

