Plotting a single function of x :

12						Y			
8									
4									
-4									
-8									
-16		-8		0		8		16	

$$
\begin{aligned}
& 1 \text { - } \text { Click on point in your worksheet } \\
& \text { where upper left corner of graph } \\
& \text { will go } \\
& 2 \text { - } \text { Click on the "2D" option in the } \\
& \text { "Functions" palette or use the } \\
& \text { "Insert }>\text { Graph }>2 D " \text { menu option } \\
& 3 \text { - } \text { Type the function name in the } \\
& \text { placeholder below the graph }
\end{aligned}
$$

$\sin (x)$

Changing the size of the graph window:
Click on the graph window, then drag one of the three black handlers in the graph window to adjust its size

$\sin (x)$
In this example we plot the
function: $f(x)=\sin (x)$

$\sin (x)$

$\sin (x)$

1 - Click on the "Move" option in the "Plot" palette
2 - Click on the graph window and drag the mouse in the direction where you want to move the axes.

Scaling (zooming) the graph:

$\sin (x)$
To zoom the x-axis only: ---->
1 - Click on "Scale" in the "Plot" palette
2 - Click on the graph window
3 - Hold down the "Control" key
4 - Roll the mouse wheel up or down

$\sin (x)$
<--- To zoom the x-axis only:
1 - Click on "Scale" in the "Plot" palette
2 - Click on the graph window
3 - Hold down the "Shift" key
4 - Roll the mouse wheel up or down

<--- You can zoom both axes by zooming one axis at a time. In this case, I zoomed the x axis first, and then the y axis.

Plotting various functions simultaneously:

1 - create a 2D graph
2 - click on the function placeholder (lower left corner) to select it 3 - click on the "Equation System" option in the "Functions" palette to produce a minimum of two function entries
4 - Type the two functions to be plotted
Note: the first function listed is plotted using a blue line, the second one uses a red line

$$
\left\{\begin{array}{l}
\sin (x) \\
\cos (x)
\end{array}\right.
$$

1 - To add more than two functions to plot, use the "Equation System" option in the "Functions" palette as above
2 - Click on the "Equation System" cell, and drag down corner of cell adding as many placeholders as you want.
3 - Type the functions to be plotted, one at a time, clicking outside of the graph after you enter each one of them (this will allow you to see each function plota as they are added to the graph)

Notes:
1 - As you add functions to plot, SMath Studio uses the following colors for the plots:
1 - blue
2 - red 3 - black 4 - magenta, etc.

2 - In this example the graph has been zoomed using the approach described above

Plotting a function using vectors:
$x:=-\Pi,-\Pi+\frac{\Pi}{20} \ldots \Pi$

$$
\begin{aligned}
& n:=\text { length }(x) \\
& n=41
\end{aligned}
$$

for $k \in 1 . . n$

$$
y_{k}:=\sin \left(x_{k}\right)^{2}+\sin \left(2 \cdot x_{k}\right)
$$

Vectors of x and y data are created using ranges, example:
Create x vector as follows
Type: x : range - p cntl-G, p cntl-G ,

- p cntl-G + p cntl-G / 20

Calculate the length of vector $=n$

Fill out y vector using a for loop. Click "for" in the "Programming" palette, then use: range 1 , n

Use sub-indices, e.g., y [k ... etc.
$\mathrm{M}:=\operatorname{augment}(\mathrm{x}, \mathrm{y})$

M

Using points or lines for a plot:

M

Form augmented matrix M with vectors x and y, place M in graph as a function name:
<--- The graph was zoomed in and the axes moved by using the following procedures:

1 - To zoom x-axis only: click on "Scale" in the "Plot" palette, hold the "Control" key, and use the mouse wheel
2 - To zoom y-axis only: click on "Scale" in the "Plot" paletted, hold the "Shift" key and use the mouse wheel
3 - To move axes, drag mouse across graph window

Matrices can be used for plotting parametric plots:
$t:=-\Pi,-\Pi+\frac{\Pi}{50} \cdots \Pi$
$n:=l \operatorname{length}(t)$

$$
\text { for } k \in 1 \ldots n
$$

$$
\left\lvert\, \begin{aligned}
& x_{k}:=\sin \left(3 \cdot t_{k}\right) \\
& y_{k}:=2 \cdot \cos \left(2 \cdot t_{k}\right)
\end{aligned}\right.
$$

$\mathrm{M}:=\operatorname{augment}(\mathrm{x}, \mathrm{y})$

Define the vector of the parameter t
Determine length of vector $t=n$

Calculate vectors of $x=x(t)$ and $y=y(t)$

Produce matrix of (x, y) and plot it

Polar plots can be produced using vectors and matrices:
$\theta:=0, \frac{\pi}{50} \ldots 2 \cdot \pi$
$\mathrm{n}:=$ length (θ)
for $k \in 1 \ldots n$

$$
r_{k}:=2 \cdot\left(1+2 \cdot \sin \left(\theta_{k}\right)\right)
$$

for $k \in 1 . . n$

$$
\left\lvert\, \begin{aligned}
& x x_{k}:=r_{k} \cdot \cos \left(\theta_{k}\right) \\
& y y_{k}:=r_{k} \cdot \sin \left(\theta_{k}\right)
\end{aligned}\right.
$$

$P:=\operatorname{augment}(x x, y y)$

1 - Using "Plot by Lines" option in the "Plot" palette

Generate vector of θ between 0 and 2π Determine lenght of vector θ

Generate values of $r=f(\theta)$

Generate coordinates:

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Produce matrix of (x, y) and plot it

2 - Using "Plot by Lines" option in the "Plot" palette

Using graphs in solving equations:

In this example we seek the solution(s) for the equation:

$$
x^{2}+1=x^{3}+2 \cdot x-5
$$

A solution can be found by determining the intersection of the functions:
$f(x):=x^{2}+1 \quad g(x):=x^{3}+2 \cdot x-5$

Using graphics and zooming the intersection we estimate the solution to be close to $\mathrm{x}=1.80$

$\left\{\begin{array}{l}f(x) \\ g(x)\end{array}\right.$
$\left\{\begin{array}{l}f(x) \\ g(x)\end{array}\right.$
The exact solution can be found using:

$$
\text { solve }\left(x^{2}+1=x^{3}+2 \cdot x-5, x\right)=1.776
$$

Three-dimensionalgraphs - surfaces:

$x+y$
Use the option "3D" in the "Functions" palette, and enter the function $f(x, y)$ in the placeholder. The result is a 3D surface, in this case, a plane. The original plot is shown above.

Use the "Rotate" option in the "Plot" palette to change the surface view.

$x+y$

This figure uses the option "Graph by Lines" in the "Plot" palette (default).

$x+y$

Use the "Move" option in the "Plot" palette to move the location of the origin in the graphics window.

$x+y$

This figure uses the option "Graph by Points" in the "Plot" palette.

$x+2 \cdot y$

Use the "Scale" option in the "Plot" palette, click on the graph, and drag the mouse over it to zoom in or out.

$x \cdot y$

The type of 3D graphs of surfaces produced by SMath Studio are referred to as wireframe plots.

The following examples show more than one surface plot together in 3D:

$\left\{\begin{array}{l}x+y \\ x-y\end{array}\right.$

$$
\left\{\begin{array}{l}
x+y \\
x-y \\
x+2 \cdot y
\end{array}\right.
$$

Drawing a space curve in 3D:
$t:=0,0.1 \ldots 10$
$n:=$ length (t)
$\mathrm{n}=101$
for $k \in 1$..n Generate vectors x, y, and z using a "for" loop

$$
\left\lvert\, \begin{aligned}
& x_{k}:=\sin \left(t_{k}\right) \\
& y_{k}:=\cos \left(t_{k}\right) \\
& z_{k}:=\frac{t_{k}}{2}
\end{aligned}\right.
$$

$M:=$ augment (x, y, z)

A space curve is defined by a matrix of three columns corresponding to coordinates x, y, and z of the curve.

Create a vector t with values of the parameter that will produce $x=x(t), y=y(t)$, and $z=z(t)$.

Determine the length of vector t

M

Plot matrix M in a 3 plot

Use the "Equation System" option in the "Plot" palette, and enter the equation of the surface (e.g., $x+y$) and the matrix that represents the space curve (e.g., M)

Plotting 2 space curves:
$t:=-2,-1.9 \ldots 2$
$n:=\operatorname{length}(t)$
$n=40$

In this example two straight lines in 3D are produced by using linear parametric equations.

Vector t is the parameter, and the coordinates of the two curves are given by ($x 1, y 1, z 1$) and ($\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2$). These lines are represented by the matrices P and Q, respectively.
for $k \in 1_{k} \cdot n_{k}$

\[\)| $x_{k}^{1}:=1+5 \cdot t_{k}$ |
| :--- |
| z $_{k}:=-1+4 \cdot t_{k}$ |

\]

$$
\begin{aligned}
& \text { for } k \in 1_{k} \ldots n \\
& \qquad \begin{array}{l}
x^{2} k_{k}:=1+3 \cdot t_{k} \\
z_{k}^{2}:=t_{k}
\end{array}
\end{aligned}
$$

$$
P:=\operatorname{augment}(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1)
$$

$$
Q:=\text { augment }\left(x^{2}, y^{2}, z 2\right)
$$

P

Q

Individual plots of curves given by matrices P and Q.

