Version 1.0.6824.32561
Functions
Additional components that add new mathematical functions to the SMath Studio program, necessary for solving problems from various fields.
-
Bessel("1:number", "2:number")
Bessel function and derivatives of "1:number" order, evaluated in the "2:number" point; returns Jnu(x), J'nu(x), Ynu(x), and Y'nu(x). -
BesselJ("1:number", "2:number")
Bessel function of the First Kind, of "1:number" order, evaluated in the "2:number" point. -
BesselY("1:number", "2:number")
Bessel function of the Second Kind, of "1:number" order, evaluated in the "2:number" point. -
Beta("1:variable", "2:variable")
Returns the Beta function of "1:variable" and "2:variable" positive parameters. -
BetaRegularized("1:variable", "2:variable", "3:variable")
Returns the Regularized Beta function evaluated in "1:variable" ∈[0;1], using "2:variable" and "3:variable" positive parameters. -
CDF.Binomial("1:number", "2:number")
Returns the Binomial CDF of k successes with "1:number" trials and "2:number" success probability ∈[0;1] in each trial. -
CDF.Binomial("1:number", "2:number", "3:number")
Returns the Binomial CDF value of "1:number" successes with "2:number" trials and "3:number" success probability ∈[0;1] in each trial. -
CDF.Cauchy("variable")
Returns the Standard Cauchy CDF (null location parameter and unitary scale parameter) evaluated in "1:variable" points. -
CDF.Cauchy("1:variable", "2:number", "3:number")
Returns the Cauchy CDF evaluated in "1:variable" points, using assigned "2:number" location parameter and the "3:number" scale parameter. -
CDF.ChiSquare("variable")
Returns the Χ² single degree of freedom CDF evaluated in "1:variable" points. -
CDF.ChiSquare("1:variable", "2:number")
Returns the Χ² CDF evaluated in "1:variable" points, using assigned "2:number" degrees of freedom. -
CDF.Exponential("variable")
Returns the Standard Exponential CDF (λ = 1) evaluated in "1:variable" points. -
CDF.Exponential("1:variable", "2:number")
Returns the Exponential CDF evaluated in "1:variable" points, using assigned "2:number" rate parameter. -
CDF.F("variable")
Returns the Fisher-Snedecor F single degree of freedom CDF evaluated in "1:variable". -
CDF.F("1:variable", "2:number", "3:number")
Returns the Fisher-Snedecor F CDF evaluated in "1:variable" points, using assigned "2:number" numerator and "3:number" denominator degrees of freedom. -
CDF.Geometric("1:variable", "2:number")
Returns the Geometric CDF of failures until the first success, for "1:variable" trials ∈[0;n] and single trial success probability "2:number" ∈(0;1]. -
CDF.GeometricShifted("1:variable", "2:number")
Returns the Geometric Shifted CDF used for modeling the number of trials until the first success, for "1:variable" trials ∈[1;n] and single trial success probability "2:number" ∈(0;1]. -
CDF.Normal("variable")
Returns the Standard Normal CDF (null mean and unitary standard deviation) evaluated in "1:variable" points. -
CDF.Normal("1:variable", "2:number")
Returns the Normal CDF evaluated in "1:variable" points, using assigned "2:number" mean and unitary standard deviation. -
CDF.Normal("1:variable", "2:number", "3:number")
Returns the Normal CDF evaluated in "1:variable" points, using assigned "2:number" mean and "3:number" as standard deviation. -
CDF.Poisson("variable")
Returns the Standard Poisson CDF (λ = 1) evaluated in "1:variable" points. -
CDF.Poisson("1:variable", "2:number")
Returns the Poisson CDF evaluated in "1:variable" points, using assigned "2:number" as expected value. -
CDF.Rayleigh("variable")
Returns the Standard Rayleigh CDF (σ = 1) evaluated in "1:variable" points. -
CDF.Rayleigh("1:variable", "2:number")
Returns the Rayleigh CDF evaluated in "1:variable" points, using assigned "2:number" as standard deviation. -
CDF.t("variable")
Returns the Student's t single degree of freedom CDF evaluated in "1:variable" points. -
CDF.t("1:variable", "2:number")
Returns the Student's t CDF evaluated in "1:variable" points, using assigned "2:number" degrees of freedom. -
CDF.Uniform("1:variable", "2:number", "3:number")
Returns the Uniform Continuous CDF evaluated in "1:variable" points, inside the ["2:number","3:number"] interval of values. -
CDF.UniformDiscrete("1:variable", "2:number", "3:number")
Returns the Uniform Discrete CDF evaluated in "1:variable" points, inside the ["2:number","3:number"] interval of values. -
CDF.Weibull("variable")
Returns the Standard Weibull CDF (λ = 1 and k = 1) evaluated in "1:variable" points. -
CDF.Weibull("1:variable", "2:number", "3:number")
Returns the Weibull CDF evaluated in "1:variable" points, using assigned "2:number" scale parameter and the "3:number" shape parameter. -
Dirac("variable")
Dirac delta function, evaluated in "1:variable" points. -
Dirac("1:variable", "2:number")
Dirac delta function, evaluated in "1:variable" points and shifted in the "2:number" point. -
erf("variable")
Error function, evaluated in "1:variable" points. -
erf("1:variable", "2:number")
Error function, evaluated in "1:variable" points and shifted in the "2:number" point. -
erfc("variable")
Complementary error function, evaluated in "1:variable" points. -
erfc("1:variable", "2:number")
Complementary error function, evaluated in "1:variable" points and shifted in the "2:number" point. -
erfinv("variable")
Inverse error function, evaluated in "1:variable" points. -
GammaRegularized.P("1:variable", "2:variable")
Regularized Gamma function P(a,x):γ(a,x)/Γ(a). -
GammaRegularized.Q("1:variable", "2:variable")
Regularized Gamma function Q(a,x):Γ(a,x)/Γ(a). -
GeometricMean("matrix")
Returns the geometric mean from a sample. -
HarmonicMean("matrix")
Returns the harmonic mean from a sample. -
Heaviside.D("variable")
Discrete Heaviside step function, evaluated in "1:variable" points. -
Heaviside.D("1:variable", "2:number")
Discrete Heaviside step function, evaluated in "1:variable" points and shifted in the "2:number" point. -
Heaviside("variable")
Heaviside step function, evaluated in "1:variable" points. -
Heaviside("1:variable", "2:number")
Heaviside step function, evaluated in "1:variable" points and shifted in the "2:number" point. -
ICDF.Binomial("1:number", "2:number", "3:number")
Returns the Binomial quantile function for "1:number" probability values ∈[0;1] with "2:number" trials and "3:number" success probability ∈[0;1] in each trial. -
ICDF.Cauchy("variable")
Returns the Standard Cauchy quantile function (null location parameter and unitary scale parameter) evaluated for "1:variable" probability values ∈[0;1]. -
ICDF.Cauchy("1:variable", "2:number", "3:number")
Returns the Cauchy quantile function evaluated for "1:variable" probability values ∈[0;1], using assigned "2:number" location parameter and the "3:number" scale parameter. -
ICDF.ChiSquare("variable")
Returns the single degree of freedom Χ² quantile function evaluated for "1:variable" probability values ∈[0;1]. -
ICDF.ChiSquare("1:variable", "2:number")
Returns the single degree of freedom Χ² quantile function evaluated for "1:variable" probability values ∈[0;1], using assigned "2:number" degrees of freedom. -
ICDF.Exponential("variable")
Returns the Standard Exponential quantile function (λ = 1) evaluated for "1:variable" probability values ∈[0;1]. -
ICDF.Exponential("1:variable", "2:number")
Returns the Exponential quantile function evaluated for "1:variable" probability values ∈[0;1], using assigned "2:number" rate parameter. -
ICDF.F("variable")
Returns the single degree of freedom Fisher-Snedecor F quantile function evaluated for "1:variable" probability values ∈[0;1]. -
ICDF.F("1:variable", "2:number", "3:number")
Returns the single degree of freedom Fisher-Snedecor F quantile function evaluated for "1:variable" probability values ∈[0;1], "2:number" numerator and "3:number" denominator degrees of freedom. -
ICDF.Geometric("1:variable", "2:number")
Returns the Geometric quantile function, for "1:variable" probability values ∈(0;1] to observe n successes with single trial probability "2:number" ∈(0;1]. -
ICDF.GeometricShifted("1:variable", "2:number")
Returns the Geometric Shifted quantile function used for modeling the number of trials until the first success, for "1:variable" probability values ∈(0;1] to observe n failures until the first success with single trial probability "2:number" ∈(0;1]. -
ICDF.Normal("variable")
Returns the Standard Normal quantile function (null mean and unitary standard deviation) evaluated for "1:variable" probability values ∈[0;1]. -
ICDF.Normal("1:variable", "2:number")
Returns the Normal quantile function evaluated for "1:variable" probability values ∈[0;1], using assigned "2:number" mean and unitary standard deviation. -
ICDF.Normal("1:variable", "2:number", "3:number")
Returns the Normal quantile function evaluated for "1:variable" probability values, using assigned "2:number" mean and "3:number" as standard deviation. -
ICDF.Poisson("variable")
Returns the Standard quantile function (λ = 1) evaluated for "1:variable" probability values. -
ICDF.Poisson("1:variable", "2:number")
Returns the Poisson quantile function evaluated for "1:variable" probability values ∈[0;1], using assigned "2:number" as expected value. -
ICDF.Rayleigh("variable")
Returns the Standard Rayleigh quantile function (σ = 1) evaluated for "1:variable" probability values ∈[0;1]. -
ICDF.Rayleigh("1:variable", "2:number")
Returns the Rayleigh quantile function evaluated for "1:variable" probability values ∈[0;1], using assigned "2:number" as standard deviation. -
ICDF.t("variable")
Returns the Standard Student's t quantile function (ν = 1) evaluated for "1:variable" probability values ∈[0;1]. -
ICDF.t("1:variable", "2:number")
Returns the Student's t quantile function evaluated for "1:variable" probability values ∈[0;1], using assigned "2:number" degrees of freedom (ν). -
ICDF.Uniform("1:variable", "2:number", "3:number")
Returns the Uniform Continuous quantile function evaluated for "1:variable" probability values ∈[0;1], inside the ["2:number","3:number"] interval of values. -
ICDF.UniformDiscrete("1:variable", "2:number", "3:number")
Returns the Uniform Discrete quantile function evaluated for "1:variable" probability values ∈[0;1], inside the ["2:number","3:number"] interval of values. -
ICDF.Weibull("variable")
Returns the Standard Weibull quantile function (λ = 1 and k = 1) evaluated for "1:variable" probability values ∈[0;1]. -
ICDF.Weibull("1:variable", "2:number", "3:number")
Returns the Weibull quantile function evaluated for "1:variable" probability values ∈[0;1], using assigned "2:number" scale parameter and the "3:number" shape parameter. -
Intercept("1:matrix", "2:matrix")
Returns the intercept of the straight line given by a simple linear regression from a data points "1:matrix","2:matrix". -
Kurtosis("matrix")
Returns the β₂ kurtosis from a sample. -
KurtosisExcess("matrix")
Returns the γ₂ kurtosis excess from a sample. -
Mean("matrix")
Returns the arithmetic mean from a sample. -
Median("matrix")
Returns the median value from a sample. -
Mode("matrix")
Returns the mode value from a sample. -
Mode("1:matrix", "2:variable")
Returns the mode value from a sample and the number of occourrences. -
Moment("1:matrix", "2:number")
Returns the "2:number"th central moment of a sample "1:matrix". -
pdf.Binomial("1:number", "2:number")
Returns the Binomial pdf of k successes with "1:number" trials and "2:number" success probability ∈[0;1] in each trial. -
pdf.Binomial("1:number", "2:number", "3:number")
Returns the Binomial pdf value of "1:number" successes with "2:number" trials and "3:number" success probability ∈[0;1] in each trial. -
pdf.Cauchy("variable")
Returns the Standard Cauchy pdf (null location parameter and unitary scale parameter) evaluated in "1:variable" points. -
pdf.Cauchy("1:variable", "2:number", "3:number")
Returns the Cauchy pdf evaluated in "1:variable" points, using assigned "2:number" location parameter and the "3:number" scale parameter. -
pdf.ChiSquare("variable")
Returns the Χ² single degree of freedom pdf evaluated in "1:variable" points. -
pdf.ChiSquare("1:variable", "2:number")
Returns the Χ² pdf evaluated in "1:variable" points, using assigned "2:number" degrees of freedom. -
pdf.Exponential("variable")
Returns the Standard Exponential pdf (λ = 1) evaluated in "1:variable" points. -
pdf.Exponential("1:variable", "2:number")
Returns the Exponential pdf in "1:variable" points, using assigned "2:number" rate parameter. -
pdf.F("variable")
Returns the Fisher-Snedecor F single degree of freedom pdf evaluated in "1:variable". -
pdf.F("1:variable", "2:number", "3:number")
Returns the Fisher-Snedecor F pdf evaluated in "1:variable" points, using assigned "2:number" numerator and "3:number" denominator degrees of freedom. -
pdf.Geometric("1:variable", "2:number")
Returns the Geometric pdf of failures until the first success, for "1:variable" trials ∈[0;n] and single trial success probability "2:number" ∈(0;1]. -
pdf.GeometricShifted("1:variable", "2:number")
Returns the Geometric pdf used for modeling the number of trials until the first success, for "1:variable" trials ∈[1;n] and single trial success probability "2:number" ∈(0;1]. -
pdf.Normal("variable")
Returns the Standard Normal pdf (null mean and unitary standard deviation) evaluated in "1:variable" points. -
pdf.Normal("1:variable", "2:number")
Returns the Normal pdf evaluated in "1:variable" points, using assigned "2:number" mean and unitary standard deviation. -
pdf.Normal("1:variable", "2:number", "3:number")
Returns the Normal pdf evaluated in "1:variable" points, using assigned "2:number" mean and "3:number" as standard deviation. -
pdf.Poisson("variable")
Returns the Standard Poisson pdf (λ = 1) evaluated in "1:variable" points. -
pdf.Poisson("1:variable", "2:number")
Returns the Poisson pdf evaluated in "1:variable" points, using assigned "2:number" as expected value. -
pdf.Rayleigh("variable")
Returns the Standard Rayleigh pdf (σ = 1) evaluated in "1:variable" points. -
pdf.Rayleigh("1:variable", "2:number")
Returns the Rayleigh pdf evaluated in "1:variable" points, using assigned "2:number" as standard deviation. -
pdf.t("variable")
Returns the Student's t single degree of freedom pdf evaluated in "1:variable" points. -
pdf.t("1:variable", "2:number")
Returns the Student's t pdf evaluated in "1:variable" points, using assigned "2:number" degrees of freedom. -
pdf.Uniform("1:variable", "2:number", "3:number")
Returns the Uniform Continuous pdf evaluated in "1:variable" points, inside the ["2:number","3:number"] interval of values. -
pdf.UniformDiscrete("1:variable", "2:number", "3:number")
Returns the Uniform Discrete pdf evaluated in "1:variable" points, inside the ["2:number","3:number"] interval of values. -
pdf.Weibull("variable")
Returns the Standard Weibull pdf (λ = 1 and k = 1) evaluated in "1:variable" points. -
pdf.Weibull("1:variable", "2:number", "3:number")
Returns the Weibull pdf evaluated in "1:variable" points, using assigned "2:number" scale parameter and the "3:number" shape parameter. -
Random.N("1:number", "2:number")
Returns a random value between "1:number" and "2:number" with uniform distribution. "1:number" and "2:number" must be between -2147483648 and 2147483646. -
Random.N("1:number", "2:number", "3:number")
Returns a vector containing "1:number" of random values between "2:number" and "3:number" with uniform distribution. "2:number" and "3:number" must be between -2147483648 and 2147483646. -
Random.N("1:number", "2:number", "3:number", "4:number")
Returns a "1:number" x "2:number" rectangular matrix containing random values between "3:number" and "4:number" with uniform distribution. "3:number" and "4:number" must be between -2147483648 and 2147483646. -
Random("number")
Returns a vector containing "1:number" of random values between 0 and 1 with uniform distribution. -
Random("1:number", "2:number")
Returns a "1:number" x "2:number" rectangular matrix containing random values between 0 and 1 with uniform distribution. -
Skewness("matrix")
Returns the g₁ skewness from a sample (biased). -
Slope("1:matrix", "2:matrix")
Returns the slope of the straight line given by a simple linear regression from a data points "1:matrix","2:matrix". -
StdDev("matrix")
Returns the unbiased standard deviation from a sample "1:matrix". -
Variance("matrix")
Returns the unbiased variance from a sample "1:matrix". -
WeightedMean("1:matrix", "2:matrix")
Returns the weighted arithmetic mean from a sample "1:matrix" and a corresponding weight "2:matrix".