1 страниц (7 вхождений)
Intel ODE Solver Library - Intel ODE Solver Library - Сообщения
#1 Опубликовано: 31.01.2019 17:48:55
Intel ODE Solver Library

Functions list: rkm9st(5), mk52lfn(5), mk52lfa(5), rkm9mkn(5), rkm9mka(5).
rkm9st(init, x1, x2, intvls, D) A specialized routine for solving non-stiff and middle-stiff ODE systems using the explicit method, which is based on the 4th order Merson’s method and the 1st order multistage method of up to and including 9 stages with stability control.
mk52lfn(init, x1, x2, intvls, D) A specialized routine for solving stiff ODE systems using the implicit method based on L-stable (5,2)-method with the numerical Jacobi matrix, which is computed by the routine.
mk52lfa(init, x1, x2, intvls, D) A specialized routine for solving stiff ODE systems using the implicit method based on L-stable (5,2)-method with numerical or analytical computation of the Jacobi matrix. The user must provide a routine for this computation.
rkm9mkn(init, x1, x2, intvls, D) A specialized routine for solving ODE systems with a variable or a priori unknown stiffness; automatically chooses the explicit or implicit scheme in every step and computes the numerical Jacobi matrix when necessary.
rkm9mka(init, x1, x2, intvls, D) A specialized routine for solving ODE systems with a variable or a priori unknown stiffness; automatically chooses the explicit or implicit scheme in every step. The user must provide a routine for numerical or analytical computation of the Jacobi matrix.
Arguments:
- init is either a vector of n real initial values, where n is the number of unknowns (or a single scalar initial value, in the case of a single ODE).
- x1 and x2 are real, scalar endpoints of the interval over which the solution to the ODE(s) is evaluated. Initial values in init are the values of the ODE function(s) evaluated at x1.
- intvls is the integer number of discretization intervals used to interpolate the solution function. The number of solution points is the number of intervals + 1.
- D is a vector function of the form D(x,y) specifying the right-hand side of the system

iode.examples.sm (204 КиБ) скачан 383 раз(а).
iode.kinetic1.sm (7 КиБ) скачан 284 раз(а).
iode.kinetic2.sm (14 КиБ) скачан 264 раз(а).
iode.kinetic3.sm (14 КиБ) скачан 264 раз(а).
iode.integrate.sm (10 КиБ) скачан 269 раз(а).
iode.test1.sm (22 КиБ) скачан 272 раз(а).
iode.test2.sm (22 КиБ) скачан 266 раз(а).
iode.Amplitude detector.sm (20 КиБ) скачан 265 раз(а).
Box_models.sm (100 КиБ) скачан 233 раз(а).
iode.examples.pdf (416 КиБ) скачан 339 раз(а).
iode.kinetic1.pdf (74 КиБ) скачан 253 раз(а).
iode.kinetic2.pdf (90 КиБ) скачан 231 раз(а).
iode.kinetic3.pdf (88 КиБ) скачан 235 раз(а).
iode.integrate.pdf (88 КиБ) скачан 274 раз(а).
iode.test1.pdf (116 КиБ) скачан 234 раз(а).
iode.test2.pdf (121 КиБ) скачан 232 раз(а).
iode.Amplitude detector.pdf (147 КиБ) скачан 238 раз(а).
Box_models.pdf (145 КиБ) скачан 228 раз(а).
Documents:
Intel ODE Solver Library Reference Manual (2018).pdf (239 КиБ) скачан 255 раз(а).
See also:
● [topic=726]Mathcad Toolbox[/topic]
● [topic=1918]DotNumerics[/topic]
● [topic=13809]SADEL[/topic]
● [topic=1970]Matlab C++ Math Library[/topic]
● [topic=17063]OSLO[/topic]
● [topic=17067]lsoda[/topic]
● [topic=1997]GNU Scientific Library (GSL)[/topic]






Functions list: rkm9st(5), mk52lfn(5), mk52lfa(5), rkm9mkn(5), rkm9mka(5).
rkm9st(init, x1, x2, intvls, D) A specialized routine for solving non-stiff and middle-stiff ODE systems using the explicit method, which is based on the 4th order Merson’s method and the 1st order multistage method of up to and including 9 stages with stability control.
mk52lfn(init, x1, x2, intvls, D) A specialized routine for solving stiff ODE systems using the implicit method based on L-stable (5,2)-method with the numerical Jacobi matrix, which is computed by the routine.
mk52lfa(init, x1, x2, intvls, D) A specialized routine for solving stiff ODE systems using the implicit method based on L-stable (5,2)-method with numerical or analytical computation of the Jacobi matrix. The user must provide a routine for this computation.
rkm9mkn(init, x1, x2, intvls, D) A specialized routine for solving ODE systems with a variable or a priori unknown stiffness; automatically chooses the explicit or implicit scheme in every step and computes the numerical Jacobi matrix when necessary.
rkm9mka(init, x1, x2, intvls, D) A specialized routine for solving ODE systems with a variable or a priori unknown stiffness; automatically chooses the explicit or implicit scheme in every step. The user must provide a routine for numerical or analytical computation of the Jacobi matrix.
Arguments:
- init is either a vector of n real initial values, where n is the number of unknowns (or a single scalar initial value, in the case of a single ODE).
- x1 and x2 are real, scalar endpoints of the interval over which the solution to the ODE(s) is evaluated. Initial values in init are the values of the ODE function(s) evaluated at x1.
- intvls is the integer number of discretization intervals used to interpolate the solution function. The number of solution points is the number of intervals + 1.
- D is a vector function of the form D(x,y) specifying the right-hand side of the system





iode.examples.sm (204 КиБ) скачан 383 раз(а).
iode.kinetic1.sm (7 КиБ) скачан 284 раз(а).
iode.kinetic2.sm (14 КиБ) скачан 264 раз(а).
iode.kinetic3.sm (14 КиБ) скачан 264 раз(а).
iode.integrate.sm (10 КиБ) скачан 269 раз(а).
iode.test1.sm (22 КиБ) скачан 272 раз(а).
iode.test2.sm (22 КиБ) скачан 266 раз(а).
iode.Amplitude detector.sm (20 КиБ) скачан 265 раз(а).
Box_models.sm (100 КиБ) скачан 233 раз(а).
iode.examples.pdf (416 КиБ) скачан 339 раз(а).
iode.kinetic1.pdf (74 КиБ) скачан 253 раз(а).
iode.kinetic2.pdf (90 КиБ) скачан 231 раз(а).
iode.kinetic3.pdf (88 КиБ) скачан 235 раз(а).
iode.integrate.pdf (88 КиБ) скачан 274 раз(а).
iode.test1.pdf (116 КиБ) скачан 234 раз(а).
iode.test2.pdf (121 КиБ) скачан 232 раз(а).
iode.Amplitude detector.pdf (147 КиБ) скачан 238 раз(а).
Box_models.pdf (145 КиБ) скачан 228 раз(а).
Documents:
Intel ODE Solver Library Reference Manual (2018).pdf (239 КиБ) скачан 255 раз(а).
See also:
● [topic=726]Mathcad Toolbox[/topic]
● [topic=1918]DotNumerics[/topic]
● [topic=13809]SADEL[/topic]
● [topic=1970]Matlab C++ Math Library[/topic]
● [topic=17063]OSLO[/topic]
● [topic=17067]lsoda[/topic]
● [topic=1997]GNU Scientific Library (GSL)[/topic]
Russia ☭ forever, Viacheslav N. Mezentsev
3 пользователям понравился этот пост
NDTM Amarasekera 01.02.2019 01:43:00, Davide Carpi 01.02.2019 10:56:00, Radovan Omorjan 01.02.2019 15:35:00
#2 Опубликовано: 11.07.2021 09:47:22
325 сообщений из 2 052 понравились и 1 не понравились пользователям.
Группа: Moderator
Hmm...even dn_GearsBDF() will go nuts for this example.
Just for the record...

iode.Amplitude detector-1.sm (19 КиБ) скачан 163 раз(а).
EDIT: mk52lfa() and mk52lfn() will also perform well here
Just for the record...

iode.Amplitude detector-1.sm (19 КиБ) скачан 163 раз(а).
EDIT: mk52lfa() and mk52lfn() will also perform well here
When Sisyphus climbed to the top of a hill, they said: "Wrong boulder!"
#3 Опубликовано: 11.07.2021 10:15:24
WroteHmm...even dn_GearsBDF() will go nuts for this example.
From recollection,NONE ODE solve that one.
Cheers ... Jean.
ODE rkfixed Pulse Pitfall.sm (37 КиБ) скачан 190 раз(а).
#4 Опубликовано: 11.07.2021 12:20:01
1 пользователям понравился этот пост
Radovan Omorjan 11.07.2021 15:58:00
#5 Опубликовано: 11.07.2021 15:59:35
325 сообщений из 2 052 понравились и 1 не понравились пользователям.
Группа: Moderator
I should have guessed that
. Thank you.

When Sisyphus climbed to the top of a hill, they said: "Wrong boulder!"
#7 Опубликовано: 20.12.2021 16:17:42

Plugin updated.
Changes:
- solution restructured;
- converting the task for the ODE solver to the numerical form is now performed through the Mathcad Toolbox plugin (to avoid code duplication), so it must be installed;
- refactored.
Solvers that support mathematical notation now reuse code from the Mathcad Toolbox plugin. Now there is no need to recompile every such plugin.
Russia ☭ forever, Viacheslav N. Mezentsev
1 страниц (7 вхождений)
-
Новые сообщения
-
Нет новых сообщений