Do not understand why

Do not understand why - Сообщения

#1 Опубликовано: 07.01.2017 17:19:37
Andrey Ivashov

Andrey Ivashov

2269 сообщений из 3729 понравились пользователям.

Группа: Super Administrator

Hello!

Does anybody can explain the result of this expression in wolfram alpha?

wa_example_1.png

Why Amperes are used for both operands in result?
#2 Опубликовано: 07.01.2017 19:13:37
Brian Runagle

Brian Runagle

13 сообщений из 27 понравились пользователям.

Группа: User

The input expression mixes unitless with units: 1(unitless) + 3i(units A)
so I guess it corrects this by using Amps throughout in the output.
Brian
#3 Опубликовано: 07.01.2017 20:36:06
Martin Kraska

Martin Kraska

1222 сообщений из 2150 понравились пользователям.

Группа: Moderator

Andrey, please don't adopt any silent correction behaviour for units in SMath. The rejection of expressions with non-matching units is very helpful.
Martin Kraska Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
1 пользователям понравился этот пост
Davide Carpi 08.01.2017 16:26:00
#4 Опубликовано: 07.01.2017 22:22:21
Jean Giraud

Jean Giraud

983 сообщений из 6866 понравились пользователям.

Группа: User

Wolfram shows that the complex argument is ill posed
if associated with unit. You have it same way in Smath.

Jean

Andrey Wolfram Alpha.sm (4 КиБ) скачан 62 раз(а).
#5 Опубликовано: 08.01.2017 08:33:46
Martin Kraska

Martin Kraska

1222 сообщений из 2150 понравились пользователям.

Группа: Moderator

Wrote

Wolfram shows that the complex argument is ill posed
if associated with unit. You have it same way in Smath.

Jean



Neither is the problem ill posed nor is it the same way in SMath. And Wolfram just acts like an over-eager spell-checker with making things worse while trying to make the units match.

If you take i as a variable of dimension 1/A then the units would match. Considering the input being wrong (or ill posed) would require
- i being strictly reserved for sqrt(-1) (which it is not in SMath)
- any variable (like i) being strictly dimensionless (which it is not in SMath)

Obviously both assumptions neither apply to Wolfram Alpha.

The only similarity in the behaviour between SMath and WA is that both assume i being the imaginary unit. Nothing wrong so far.

But is a clear complaint about non-matching units really "the same" as silently messing with the structure of the expression?










Martin Kraska Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
  • Новые сообщения Новые сообщения
  • Нет новых сообщений Нет новых сообщений