Ideas for further plugins - Ideas and resources about possible plugin improvements - Сообщения
#1 Опубликовано: 24.11.2013 21:02:29
WRAPPERS
- http://metanumerics.codeplex.com/
- boost c++ libraries
- GNU MP (C# Wrapper) <(--- arbitrary precision library, LGPL
CHARTS
- Google charts (project discontinued but useful as reference)
Arbitrary Precision Math libraries
- MAPM
Math libraries
- Numerical NSWC (The NSWC Mathematics Subroutine Library is a collection of Fortran 77 routines specializing in numerical mathematics)
- Special Functions Mathematical Library
Audio
- NAudio open source .NET audio and MIDI library, containing dozens of useful audio related classes intended to speed development of audio related utilities in .NET
Barcodes
- ZXing.Net (A library which supports decoding and generating of barcodes (like QR Code, PDF 417, EAN, UPC, Aztec, Data Matrix, Codabar) within images.)
MISC
- Spellcheck
- Travelling salesman problem (TSP) plugin
...
- http://metanumerics.codeplex.com/
- boost c++ libraries
- GNU MP (C# Wrapper) <(--- arbitrary precision library, LGPL
CHARTS
- Google charts (project discontinued but useful as reference)
Arbitrary Precision Math libraries
- MAPM
Math libraries
- Numerical NSWC (The NSWC Mathematics Subroutine Library is a collection of Fortran 77 routines specializing in numerical mathematics)
- Special Functions Mathematical Library
Audio
- NAudio open source .NET audio and MIDI library, containing dozens of useful audio related classes intended to speed development of audio related utilities in .NET
Barcodes
- ZXing.Net (A library which supports decoding and generating of barcodes (like QR Code, PDF 417, EAN, UPC, Aztec, Data Matrix, Codabar) within images.)
MISC
- Spellcheck
- Travelling salesman problem (TSP) plugin
...
If you like my plugins please consider to support the program buying a license; for personal contributions to me: paypal.me/dcprojects
2 пользователям понравился этот пост
#2 Опубликовано: 08.12.2013 04:45:17
Symbolic engines:
GiNaC: http://www.ginac.de (C++)
Jasymca - Symbolic Calculator for Mobile Devices: Documentation (Java).
GiNaC: http://www.ginac.de (C++)
Jasymca - Symbolic Calculator for Mobile Devices: Documentation (Java).
Russia ☭ forever, Viacheslav N. Mezentsev
3 пользователям понравился этот пост
#3 Опубликовано: 09.01.2014 17:46:53
Image region with external edit option (e.g. open in Paint upon double click). Might be just an enhancement of the internal graphics region or of the image region.
Search Function:
Full text search over all sm files for a given start point (might default to book directory. Option to open doc with highlighted occurance of the search string or the region containing it.
Search within an open docwith options to open file in new window/SMath instance. Search within
Slider region, to choose the value of a variable from a list or vector
Search Function:
Full text search over all sm files for a given start point (might default to book directory. Option to open doc with highlighted occurance of the search string or the region containing it.
Search within an open docwith options to open file in new window/SMath instance. Search within
Slider region, to choose the value of a variable from a list or vector
Martin Kraska
Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
#4 Опубликовано: 23.01.2014 11:25:38
WroteSymbolic engines:
GiNaC: http://www.ginac.de (C++)
Jasymca - Symbolic Calculator for Mobile Devices: Documentation (Java).
Hi, I've run into a free library for java called JDDE which may be useful to manage Jasymca from Smath in a similar way to the Maxima plugin
http://jdde.pretty-tools.com/
Another possible way to make use of Jasymca could be converting its java libraries to .NET assemblies by means of the tool IKVM to port java to .net dlls
http://www.ikvm.net/
#5 Опубликовано: 28.05.2014 10:26:18
boost c++ libraries
NSWC Mathematics Subroutine Library
Special Functions Mathematical Library
GNU MP (C# Wrapper) <(--- arbitrary precisiion library, LGPL
NSWC Mathematics Subroutine Library
NSWC LIBRARY TABLE OF CONTENTS
Elementary Operations
|Machine Constants Q SPMPAR, DPMPAR, IPPMAR .................3
|Argument Bounds for the Exponential Function -
| EPSLN, EXPARG, DEPSLN, DXPARG..........................5
|Sorting Lists Q ISHELL, SHELL, AORD, RISORT, SHELL2, DSORT,
| DAORD, DISORT, DDSORT, QSORTI, QSORTR, QSORTD, IORDER,
| RORDER, DORDER ........................................7
|Cube Root - CBRT, DCBRT ...................................11
Four Quadrant Arctangent - ARTNQ, DARTNQ...................11
Length of a Two-Dimensional Vector - CPABS, DCPABS ........11
Reciprocal of a Complex Number - CREC, DCREC ..............13
|Division of a Complex Number - CDVI,DIVID..................13
Square Root of a Double Precision Complex Number - DCSQR...13
Conversion of Polar to Cartesian Coordinates Q POCA .......15
Conversion of Cartesian to Polar Coordinates - CAPO .......15
Rotation of Axes - ROTA ...................................15
Planar Givens Rotations - SROTG, DROTG ....................17
Three Dimension Rotations - ROT3 ..........................19
Rotation of a Point on the Unit Sphere to the North Pole -
CONSTR ...............................................21
|Computation of the Angle Between Two Vectors - ANG ........23
|Trigonometric Functions - SIN1, COS1, DSIN1, DCOS1 ........25
|Hyperbolic Sine and Cosine Functions SNHCSH ...............27
|Exponentials Q REXP, DREXP ................................29
Logarithms - ALNREL, RLOG, RLOG1, DLNREL, DRLOG, DRLOG1 ...31
Geometry
Determining if a Point is Inside or Outside a Polygon -
LOCPT ................................................33
|Intersection of a Straight Line and Polygonal Path - PFIND.35
The Convex Hull for a Finite Planar Set Q HULL ............37
Areas of Planar Polygons - PAREA ..........................39
Hamiltonian Circuits - HC .................................41
Special Functions
Error Function - CERF, CERFC, ERF, ERFC, ERFC1, DCERF,
DCERFC, DERF, DERFC, DERFC1 ...........................45
|Inverse Error Function - ERFI, DERFI ......................51
|Difference of Error Function - AERF, DAERF ................53
Normal Probability Distribution Function - PNDF ...........55
|Inverse Normal Probability Distribution Function -
PNI,DPNI ..............................................57
|Dawson's Integral - DAW, DPDAW ............................59
Complex Fresnel Integral - CFRNLI .........................61
Real Fresnel Integrals - FRNL .............................63
Exponential Integral Function - CEXPLI, EXPLI, DEI, DEI1 ..65
Sine and Cosine Integral Functions - SI, CIN ..............69
|Exponential Exponential Integral Function - CEXEXI ........71
Dilogarithm Function - CLI, ALI ...........................73
Gamma Function - CGAMMA, GAMMA, GAMLN, DCGAMA,
DGAMMA, DGAMLN .......................................75
Digamma Function - CPSI, PSI, DCPSI, DPSI .................79
|Derivatives of the Digamma Function - PSIDF ...............81
|Incomplete Gamma Ratio Functions - GRATIO, RCOMP, DGRAT,
DRCOMP ...............................................83
|Inverse Incomplete Gamma Ratio Function - GAMINV, DGINV ...85
Logarithm of the Beta Function Q BETALN, DBETLN ...........87
Incomplete Beta Function - BRATIO, ISUBX, BRCOMP ..........89
Bessel Function Jv(z) - CBSSLJ,BSSLJ, BESJ ................91
Bessel Function Yv(z) - BSSLY .............................93
|Modified Bessel Function Iv(Z) - CBSSLI, BSSLI, BESI ......95
|Modified Bessel Function Kv(z) - CBESK, CBSSLK, BSSLK .....97
Airy Functions - CAI, CBI, AI, AIE, BI, BIE ...............99
Complete Complex Elliptic Integrals of the First and
Second Kinds - CK, CKE ..............................103
Real Elliptic Integrals of the First and Second Kinds -
ELLPI, RFVAL, RDVAL, DELLPI, DRFVAL, DRDVAL .........107
Real Elliptic Integrals of the Third Kind -
EPI, RJVAL, DEPI, DRJVAL ............................111
Jacobian Elliptic Functions - ELLPF, ELPFC1 ..............115
Weierstrass Elliptic Function for the Equianharmonic
and Lemniscatic Cases - PEQ, PEQ1, PLEM, PLEM1 ......119
Integral of the Bivariate Density Function over Arbitrary
Polygons and Semi-infinite Angular Regions - VALR2 ..123
|Circular Coverage Function - CIRCV .......................125
|Elliptical Coverage Function Q PKILL .....................127
Polynomials
Copying Polynomials - PLCOPY, DPCOPY .....................129
Addition of Polynomials - PADD, DPADD ....................131
Subtraction of Polynomials - PSUBT, DPSUBST ..............133
Multiplication of Polynomials - PMULT, DPMULT ............135
Division of Polynomials Q PDIV, DPDIV ....................137
Real Powers of Polynomials - PLPWR, DPLPWR ...............139
Inverses of Power Series - PINV, DPINV ...................141
Derivatives and Integrals of Polynomials - MPLNMV ........143
Evaluation of Chebyshev Expansions - CSEVL, DCSEVL .......145
Lagrange Polynomials Q LGRNGN, LGRNGV, LRGNGX ............147
Orthogonal Polynomials on Finite Sets - ORTHOS, ORTHOV,
ORTHOX ..............................................149
Solutions of Nonlinear Equations
|Zeros of Continuous Functions - ZEROIN, DZERO ............151
Solution of Systems of Nonlinear Equations - HBRD ........153
Solutions of Quadratic, Cubic, and Quartic Equations -
QDCRT, CBCRT, QTCRT, DQDCRT, DCBCRT, DQTCRT ........155
Double Precision Roots of Polynomials - DRPOLY, DCPOLY ...157
|Accuracy of the Roots of Polynomial - RBND, CBND .........159
Vectors
Copying Vectors Q SCOPY, DCOPY, CCOPY ....................161
Interchanging Vectors - SSWAP, DSWAP, CSWAP ..............163
Planar Rotation of Vectors - SROT, DROT, CSROT ...........165
|Modified Givens Rotations - SROTMG, DROTMG, SROTM, DROTM .167
Dot Products of Vectors - SDOT, DDOT, CDOTC, CDOTU .......171
Scaling Vectors - SSCAL, DSCAL, CSCAL, CSSCAL ............173
Vector Addition - SAXPY, DAXPY, CAXPY ....................175
Ll Norm of a Vector - SASUM, DASUM, SCASUM ...............177
L2 Norm of a Vector Q SNRM2, DNRM2, SCNRM2 ...............179
L0 Norm of a Vector - ISAMAX, IDAMAX, ICAMAX .............181
Matrices
Packing and Unpacking Symmetric Matrices - MCVFS, DMCVFS,
MCVSF, DMCVSF .......................................183
Conversion of Real Matrices to and from Double Precision
Form - MCVRD, MDCVDR ................................185
Storage of Real Matrices in the Complex Matrix Format -
MCVRC ...............................................187
The Real and Imaginary Parts of a Complex Matrix -
CMREAL, CMIMAG.......................................189
Copying matrices - MCOPY, SMCOPY, DMCOPY, CMCOPY .........191
Computation of the Conjugate of a Complex Matrix - CMCONJ.193
Transposing Matrices Q TPOSE, DTPOSE, CTPOSE, TIP,
DTIP, CTIP ..........................................195
Computing Adjoints of Complex Matrices - CMADJ, CTRANS ...197
Matrix Addition - MADD, SMADD, DMADD, CMADD ..............199
Matrix Subtraction - MSUBT, SMSUBT, DMSUBT, CMSUBT .......201
Matrix Multiplication - MTMS, DMTMS, CMTMS, MPROD,
DMPROD, CMPROD ......................................203
Product of a Packed Symmetric Matrix and a Vector -
SVPRD, DSVPRD .......................................205
Transpose Matrix Products - TMPROD .......................207
Symmetric Matrix Products - SMPROD .......................209
Kronecker Product of Matrices - KPROD, DKPROD, CKPROD ....211
|Rank of a Real Matrix - RNK, DRNK ........................213
|Inverting General Real Matrices and Solving General
| Systems of Real Linear Equations - CROUT,KROUT,
| NPIVOT, MSLV, DMSLV, MSLV1, DMSLV1 ............... 215
Solutions of Real Equations with Iterative Improvement -
SLVMP ...............................................221
Solutions of Almost Block Diagonal Systems of Linear
Equations - ARCECO, ARCESL ..........................223
Solution of Almost Block Tridiagonal Systems of Linear
Equations Q BTSLV ...................................225
Inverting Symmetric Real Matrices and Solving Symmetric
Systems of Real Linear Equations - SMSLV, DSMSLV ....227
Inverting Positive Definite Symmetric Matrices and
Solving Positive Definite Symmetric Systems of
Linear Equations - PCHOL,DPCHOL .....................231
Solution of Toeplitz Systems of Linear Equations -
TOPLX, DTOPLX .......................................233
Inverting General Complex Matrices and Solving
General Systems of Complex Linear Equations -
CMSLV, CMSLV1, DCMSLV ...............................235
Solution of Complex Equations with Iterative Improvement -
CSLVMP ..............................................239
Singular Value Decomposition of a Matrix - SSVDC,DSVDC,
CSVDC ...............................................241
Evaluation of the Characteristic Polynomial of a
Matrix - DET, DPDET, CDET ...........................243
Solution of the Matrix Equation AX + XB = C -
ABSLV, DABSLV .......................................245
Solution of the Matrix Equation AtX + XA = C where C is
Symmetric - TASLV, DTASLV ...........................247
Solution of the Matrix Equation - AX2 + BX + C = O -
SQUINT ..............................................249
Exponential of a Real Matrix - MEXP, DMEXP ...............251
Large Dense Systems of Linear Equations
Solving systems of 200-400 Linear Equations -
LE, DPLE, CLE .......................................253
Banded Matrices
Band Matrix Storage ......................................255
|Conversion of Banded Matrices to and from the
| Standard Format - CVBR, CVBD, CVBC, CVRB,
| CVDB, CVCB, CVRB1,CVDB1, CVCB1 ......................257
|Conversion of Banded Matrices to and from Sparse Form -
| MCVBS, DMCVBS, CMCVBS, MCVSB, DMCVSB, CMCVSB ....... 259
|Conversion of Banded Real Matrices to and from
| Double Precision Form - BCVRD, BCVDR ............... 261
|The Real and Imaginary Parts of a Banded
| Complex Matrix - BREAL, BIMAG .................... 263
|Computing A + Bi for Banded Real Matrices A and B - BCVR..265
|Transposing Banded Matrices Q BPOSE, DBPOSE, CBPOSE ......267
|Addition of Banded Matrices - BADD, DBADD, CBADD .........269
|Subtraction of Banded Matrices - BSUBT, DBSUBT, CBSUBT ...271
|Multiplication of Banded Matrices - BPROD,DBPROD,CBPROD ..273
Product of a Real Banded Matrix and Vector -
BVPRD, BVPRD1, BTPRD, BTPRD1 .................. 275
|Product of a Double Precision Banded Matrix and Vector -
DBVPD, DBVPD1, DBTPD, DBTPD1 ........................277
Product of a Complex Banded Matrix and Vector -
CBVPD, CBVPD1, CBTPD, CBTPD1 ..................... 279
|L1 Norm of a Real Banded Matrix - B1NRM, DB1NRM ..........281
|L0 Norm of a Real Banded Matrix - BNRM, DBNRM ............283
Solution of Banded Systems of Real Linear Equations -
BSLV, BSLV1 .........................................285
|Computation of the Condition Number of a Real
| Banded Matrix - B1CND ...............................287
|Double Precision Solution of Banded Systems of
| Real Linear Equations - DBSLV, DBSLV1 ...............289
|Computation of the Condition Number of a
Double Precision Banded Matrix - DB1CND .............291
Solution of Banded Systems of Complex Linear Equations -
CBSLV, CBSLV1 .......................................293
Sparse Matrices
Storage of Sparse Matrices ...............................295
Conversion of Sparse Matrices to and from the Standard
Format - CVRS, CVDS, CVCS, CVSR, CVSD, CVSC .........297
Conversion of Spase Real Matrices to and from
Double Precision Form - SCVRD, SCVDR ................299
The Real and Imaginary Parts of a Sparse Complex Matrix -
CSREAL, CSIMAG ......................................301
Computing A + Bi for Sparse Real Matrices A and B Q
SCVRC ...............................................303
Copying Sparse Matrices - RSCOPY, DSCOPY, CSCOPY ........305
Computing Conjugates of Sparse Complex Matrices - SCONJ ..307
Transposing Sparse Real Matrices - RPSOE, RPOSE1 .........309
Transposing Sparse Double Precision Matrices -
DPOSE, DPOSE1 .......................................311
Transposing Sparse Complex Matrices - CPOSE, CPOSE1 ......313
Addition of Sparse Matrices - SADD, DSADD, CSADD .........315
Subtraction of Sparse Matrices Q SSUBT, DSSUBT, CSSUBT ...317
Multiplication of Sparse Matrices - SPROD,DSPROD,CSPROD ..319
Product of a Real Sparse Matrix and Vector -
MVPRD, MVPRD1, MTPRD, MTPRD1 ........................321
Product of a Double Precision Sparse Matrix and Vector Q
DVPRD, DVPRD1, DTPRD, DTPRD1 ........................323
Product of a Complex Sparse Matrix and Vector -
CVPRD, CVPRD1, CTPRD, CTPRD1 ........................325
|L1 Norm of a Sparse Real Matrix - S1NRM, DS1NRM ..........327
|L0 Norm of a Sparse Real Matrix - SNRM, DSNRM ............329
Ordering the Rows of a Sparse Matrix by
Increasing Length Q SPORD ...........................331
Reordering Sparse Matrix into Block Triangular Form Q
BLKORD ..............................................333
Solution of Sparse Systems of Real Linear Equations -
SPSLV, RSLV, TSLV ...................................335
|Computation of the Condition Number of a Real
| Sparse Matrix - S1CND ...............................339
Double Precision Solution of Sparse Systems of
Real Linear Equation - DSPSLV, DSLV, DTSLV ..........341
|Computation of the Condition Number of a
| Double Precision Sparse Matrix - DS1CND .............345
Solution of Sparse Systems of Complex Linear Equations -
CSPSLV, CSLV, CTSLV .................................347
Eigenvalues and Eigenvectors
Computation of Eigenvalues of General Real Matrices -
EIG, EIG1 ................................... .......351
Computation of Eigenvalues and Eigenvectors of
General Real Matrices - EIGV, EIGV1 .................353
Double Precision Computation of Eigenvalues of
Real Matrices - DEIG ................................355
Double Precision Computation of Eigenvalues and
Eigenvectors of Real Matrices - DEIGV ...............357
Computation of Eigenvalues of Symmetric Real Matrices -
SEIG, SEIG1 .........................................359
Computation of Eigenvalues and Eigenvectors of
Symmetric Real Matrices - SEIGV, SEIGV1 .............361
|Double Precision Computation of Eigenvalues of
| Symmetric Real Matrices - DSEIG .....................363
|Double Precision Computation of Eigenvalues and
| Eigenvectors of Symmetric Real Matrices - DSEIGV ....365
Computation of Eigenvalues of Complex Matrices - CEIG ....367
Computation of Eigenvalues and Eigenvectors of
Complex Matrices - CEIGV ............................369
Double Precision Computation of Eigenvalues of
Complex Matrices - DCEIG ............................371
Double Precision Computation of Eigenvalues and
Eigenvectors of Complex Matrices - DCEIGV ...........373
L1 Solution of Linear Equations
L1 Solution of Systems of Linear Equations with Equality
and Inequality Constraints - CL1 ....................375
Least Squares Solution of Linear Equations
|Least Squares Solution of Systems of Linear Equations -
| LLSQ, LSQR, HFTI, HFTI2 .......................... 377
Least Squares Solution of Overdetermined Systems of Linear
Equations with Iterative Improvement - LLSQMP .......383
|Double Precision Least Squares Solution of Systems of
| Linear Equations - DLLSQ, DLSQR, DHFTI, DHFTI2 .....385
Least Squares Solution of Systems of Linear Equations with
Equality and Inequality Constraints - LSEI ..........391
Least Squares Solution of Systems of Linear Equations with
Equality and Nonnegativity Constraints - WNNLS ......395
Least Squares Iterative Improvement Solution of Systems of
Linear Equations with Equality Constraints - L2SLV ..399
Iterative Least Squares Solution of Banded Linear
Equations - BLSQ ...................................403
Iterative Least Squares Solution of Sparse Linear
Equations - SPLSQ, STLSQ ...........................405
Optimization
Minimization of Functions of a Single Variable - FMIN ....407
Minimization of Functions of n Variable - OPTF ...........409
Unconstrained Minimum of the Sum of Squares of Nonlinear
Functions Q LMDIFF ..................................411
Linear Programming - SMPLX, SSPLX ........................413
The Assignment Problem - ASSGN ...........................417
0-1 Knapsack Problem MKP .................................419
Transforms
Inversion of the Laplace Transform - LAINV ...............421
Fast Fourier Transform - FFT, FFTl .......................425
Multivariate Fast Fourier Transform - MFFT, MFFTl ........427
Discrete Cosine and Sine Transforms - COSQI, COSQB,
COSQF, SINQB, SINQF .................................429
Approximation of Functions
Rational Minimax Approximation of Functions Q CHEBY ......433
Lp Approximation of Functions Q ADAPT ....................435
Calculation of the Taylor Series of Complex
Analytic Function - CPSC, DCPSC .....................439
Curve Fitting
Linear Interpolation - TRP ...............................443
Lagrange Interpolation Q LTRP ............................445
Hermite Interpolation - HTRP .............................447
Conversion of Real Polynomials from Newton to Taylor
Series Form - PCOEFF ................................449
Least Squares Polynomial Fit - PFIT ......................451
Weighted Least Squares Polynomial Fit - WPFIT.............453
Cubic Spline Interpolation - CBSPL, SPLIFT ...............455
Weighted Least Squares Cubic Spline Fit - SPFIT ..........457
|Least Squares Cubic Spline Fitting with Equality and
| Inequality Constraints - CSPFIT .....................459
Cubic Spline Evaluation - SCOMP, SCOMP1, SCOMP2 ..........461
Cubic Spline Evaluation and Differentiation -
SEVAL, SEVAL1, SEVAL2 ..............................463
Integrals of Cubic Spline - CSINT, CSINT1, CSINT2 ........465
|Periodic Cubic Spline Interpolation - PDSPL ..............467
|Least Squares Periodic Cubic Spline Fitting - PDFIT ......469
|Periodic Cubic Spline Evaluation and Differentiation -
| PSCMP, PSEVL ........................................471
N-Dimensional Cubic Spline Closed Curve Fitting -
CSLOOP, LOPCMP, LOPDF ..............................473
Spline under Tension Interpolation - CURV1 ...............475
Spline under Tension Evaluation - CURV2 ..................477
Differentiation and Integrals of Splines under Tension Q
CURVD, CURVI .......................................479
Two Dimensional Spline under Tension Curve Fitting -
KURV1, KURV2 .......................................481
Two Dimensional Spline under Tension Closed Curve
fitting - KURVP1,KURVP2 ............................483
Three Dimensional Spline under Tension Curve Fitting -
QURV1, QURV2 .......................................485
|B-Splines ................................................487
|Finding the Interval that Contains a Point - INTRVL ......489
|Evaluation and Differentiation of Piecewise Polynomial
| from its B-Spline Representation - BVAL .............491
|Evaluation of the Indefinite Integral of a Piecewise
| Polynomial from its B-spline representation - BVALI..493
Conversion of Piecewise Polynomials from B-Spline to
Taylor Series Form - BSPP ..........................495
Evaluation of Piecewise Polynomials from their Taylor
Series Representation - PPVAL .......................497
Piecewise Polynomial Interpolation - BSTRP ...............499
|Weighted Least Squares Piecewise Polynomial Fitting -
| BSLSQ ...............................................501
|Least Squares Piecewise Polynomial Fitting with
| Equality and Inequality Constraints - BFIT ..........503
Surface Fitting over Rectangular Grids
|Bicubic Splines and Bisplines under Tension ..............505
|Weighted Least Squares Bicubic Spline Fitting - SPFIT2 ...507
|Evaluation and Differentiation of Bicubic Splines -
| CSURF, CSURF1, CSRF, CSRF2 ..........................509
Bispline under Tension Surface Interpolation - SURF ......513
Bispline under Tension Evaluation - SURF2, NSURF2 ........515
|Bivariate B-Spline Piecewise Polynomial Interpolation -
| BSTRP2 ..............................................517
|Bivariate B-Spline Piecewise Polynomial Least Squares
| Fitting - BSLSQ2 ....................................519
|Evaluation and Differentiation of Bivariate Piecewise
| Polynomials from their B-Spline Representation -
| BVAL2................................................521
Surface Fitting over Arbitrarily Positioned Data Points
|Surface Interpolation for Arbitrarily Positioned
| Data Points - TRMESH, GRADG, GRADL, SFVAL, SFVAL2 ...523
Manifold Fitting
Weighted Least Squares Fitting with Polynomials of n
Variables - MFIT, DMFIT, MEVAL, DMEVAL .............527
Numerical Integration
|Evaluation of Integrals over Finite Intervals -
| QAGS, QXGS, QSUBA, DQAGS, DQXGS .....................531
Evaluation of Integrals over Infinite Intervals -
QAGI, DQAGI .........................................539
Evaluation of Double Integrals over Triangles Q CUBTRI ...543
Integral Equations
Solution of Fredholm Integral Equations of the Second
Kind - IESLV .......................................545
Ordinary Differential Equations/Initial Value Problems
|The Initial Value Solvers - Introductory Comments ........549
Adaptive Adams Solution of Nonstiff Differential
Equations - ODE .....................................551
|Adaptive Block RKF Solution of Nonstiff Differential
Equations - BRKF45 ..................................555
Adaptive RFK Solution of Nonstiff Differential
Equations - RFK45 ..................................559
Adaptive RFK Solution of Nonstiff Differebtial Equations
with Global Error Estimation - GERK .................563
Adaptive Solution of Stiff Differential Equations -
SFODE, SFODE1 .......................................567
Fourth-Order Runge-Kutta - RK ............................571
Eighth-Order Runge-Kutta - RK8 ...........................573
Partial Differential Equations
Separable Second-Order Elliptic Equations on Rectangular
Domains - SEPDE ...................................575
Discrete Random Number Generation
|Uniform Random Selection of Values from a Finite Set of
| Integers - URGET ....................................579
Continuous Random Number Generation
|Uniform Random Number Generator - URNG, DURNG.............581
|Generating Points Uniformly in a Square - URNG2, DURNG2 ..583
|Generating Points Uniformly in a Circle - RCIR, DRCIR ....585
|Normal Random Number Generator - RNOR, DRNOR,
| NRNG, DNRNG .........................................587
|Multivariate Normal Random Vector Generator -
| NRVG, DNRVG, NRVG1, DNRVG1 ..........................589
|Exponential Random Number Generator - RANEXP, DRNEXP .....593
|Gamma Random Number Generator and the Chi-Square
| Distribution - RGAM, DRGAM ..........................595
|Beta Random Number Generator - RBETA, DRBETA .............597
|F-Distribution Random Number Generator - FRAN, DFRAN .....599
|Student t-Distribution Random Number Generator -
| TRAN, DTRAN .........................................601
|First Order Markov Random Number Generator - RMK1,DRMK1 ..603
Elementary Operations
|Machine Constants Q SPMPAR, DPMPAR, IPPMAR .................3
|Argument Bounds for the Exponential Function -
| EPSLN, EXPARG, DEPSLN, DXPARG..........................5
|Sorting Lists Q ISHELL, SHELL, AORD, RISORT, SHELL2, DSORT,
| DAORD, DISORT, DDSORT, QSORTI, QSORTR, QSORTD, IORDER,
| RORDER, DORDER ........................................7
|Cube Root - CBRT, DCBRT ...................................11
Four Quadrant Arctangent - ARTNQ, DARTNQ...................11
Length of a Two-Dimensional Vector - CPABS, DCPABS ........11
Reciprocal of a Complex Number - CREC, DCREC ..............13
|Division of a Complex Number - CDVI,DIVID..................13
Square Root of a Double Precision Complex Number - DCSQR...13
Conversion of Polar to Cartesian Coordinates Q POCA .......15
Conversion of Cartesian to Polar Coordinates - CAPO .......15
Rotation of Axes - ROTA ...................................15
Planar Givens Rotations - SROTG, DROTG ....................17
Three Dimension Rotations - ROT3 ..........................19
Rotation of a Point on the Unit Sphere to the North Pole -
CONSTR ...............................................21
|Computation of the Angle Between Two Vectors - ANG ........23
|Trigonometric Functions - SIN1, COS1, DSIN1, DCOS1 ........25
|Hyperbolic Sine and Cosine Functions SNHCSH ...............27
|Exponentials Q REXP, DREXP ................................29
Logarithms - ALNREL, RLOG, RLOG1, DLNREL, DRLOG, DRLOG1 ...31
Geometry
Determining if a Point is Inside or Outside a Polygon -
LOCPT ................................................33
|Intersection of a Straight Line and Polygonal Path - PFIND.35
The Convex Hull for a Finite Planar Set Q HULL ............37
Areas of Planar Polygons - PAREA ..........................39
Hamiltonian Circuits - HC .................................41
Special Functions
Error Function - CERF, CERFC, ERF, ERFC, ERFC1, DCERF,
DCERFC, DERF, DERFC, DERFC1 ...........................45
|Inverse Error Function - ERFI, DERFI ......................51
|Difference of Error Function - AERF, DAERF ................53
Normal Probability Distribution Function - PNDF ...........55
|Inverse Normal Probability Distribution Function -
PNI,DPNI ..............................................57
|Dawson's Integral - DAW, DPDAW ............................59
Complex Fresnel Integral - CFRNLI .........................61
Real Fresnel Integrals - FRNL .............................63
Exponential Integral Function - CEXPLI, EXPLI, DEI, DEI1 ..65
Sine and Cosine Integral Functions - SI, CIN ..............69
|Exponential Exponential Integral Function - CEXEXI ........71
Dilogarithm Function - CLI, ALI ...........................73
Gamma Function - CGAMMA, GAMMA, GAMLN, DCGAMA,
DGAMMA, DGAMLN .......................................75
Digamma Function - CPSI, PSI, DCPSI, DPSI .................79
|Derivatives of the Digamma Function - PSIDF ...............81
|Incomplete Gamma Ratio Functions - GRATIO, RCOMP, DGRAT,
DRCOMP ...............................................83
|Inverse Incomplete Gamma Ratio Function - GAMINV, DGINV ...85
Logarithm of the Beta Function Q BETALN, DBETLN ...........87
Incomplete Beta Function - BRATIO, ISUBX, BRCOMP ..........89
Bessel Function Jv(z) - CBSSLJ,BSSLJ, BESJ ................91
Bessel Function Yv(z) - BSSLY .............................93
|Modified Bessel Function Iv(Z) - CBSSLI, BSSLI, BESI ......95
|Modified Bessel Function Kv(z) - CBESK, CBSSLK, BSSLK .....97
Airy Functions - CAI, CBI, AI, AIE, BI, BIE ...............99
Complete Complex Elliptic Integrals of the First and
Second Kinds - CK, CKE ..............................103
Real Elliptic Integrals of the First and Second Kinds -
ELLPI, RFVAL, RDVAL, DELLPI, DRFVAL, DRDVAL .........107
Real Elliptic Integrals of the Third Kind -
EPI, RJVAL, DEPI, DRJVAL ............................111
Jacobian Elliptic Functions - ELLPF, ELPFC1 ..............115
Weierstrass Elliptic Function for the Equianharmonic
and Lemniscatic Cases - PEQ, PEQ1, PLEM, PLEM1 ......119
Integral of the Bivariate Density Function over Arbitrary
Polygons and Semi-infinite Angular Regions - VALR2 ..123
|Circular Coverage Function - CIRCV .......................125
|Elliptical Coverage Function Q PKILL .....................127
Polynomials
Copying Polynomials - PLCOPY, DPCOPY .....................129
Addition of Polynomials - PADD, DPADD ....................131
Subtraction of Polynomials - PSUBT, DPSUBST ..............133
Multiplication of Polynomials - PMULT, DPMULT ............135
Division of Polynomials Q PDIV, DPDIV ....................137
Real Powers of Polynomials - PLPWR, DPLPWR ...............139
Inverses of Power Series - PINV, DPINV ...................141
Derivatives and Integrals of Polynomials - MPLNMV ........143
Evaluation of Chebyshev Expansions - CSEVL, DCSEVL .......145
Lagrange Polynomials Q LGRNGN, LGRNGV, LRGNGX ............147
Orthogonal Polynomials on Finite Sets - ORTHOS, ORTHOV,
ORTHOX ..............................................149
Solutions of Nonlinear Equations
|Zeros of Continuous Functions - ZEROIN, DZERO ............151
Solution of Systems of Nonlinear Equations - HBRD ........153
Solutions of Quadratic, Cubic, and Quartic Equations -
QDCRT, CBCRT, QTCRT, DQDCRT, DCBCRT, DQTCRT ........155
Double Precision Roots of Polynomials - DRPOLY, DCPOLY ...157
|Accuracy of the Roots of Polynomial - RBND, CBND .........159
Vectors
Copying Vectors Q SCOPY, DCOPY, CCOPY ....................161
Interchanging Vectors - SSWAP, DSWAP, CSWAP ..............163
Planar Rotation of Vectors - SROT, DROT, CSROT ...........165
|Modified Givens Rotations - SROTMG, DROTMG, SROTM, DROTM .167
Dot Products of Vectors - SDOT, DDOT, CDOTC, CDOTU .......171
Scaling Vectors - SSCAL, DSCAL, CSCAL, CSSCAL ............173
Vector Addition - SAXPY, DAXPY, CAXPY ....................175
Ll Norm of a Vector - SASUM, DASUM, SCASUM ...............177
L2 Norm of a Vector Q SNRM2, DNRM2, SCNRM2 ...............179
L0 Norm of a Vector - ISAMAX, IDAMAX, ICAMAX .............181
Matrices
Packing and Unpacking Symmetric Matrices - MCVFS, DMCVFS,
MCVSF, DMCVSF .......................................183
Conversion of Real Matrices to and from Double Precision
Form - MCVRD, MDCVDR ................................185
Storage of Real Matrices in the Complex Matrix Format -
MCVRC ...............................................187
The Real and Imaginary Parts of a Complex Matrix -
CMREAL, CMIMAG.......................................189
Copying matrices - MCOPY, SMCOPY, DMCOPY, CMCOPY .........191
Computation of the Conjugate of a Complex Matrix - CMCONJ.193
Transposing Matrices Q TPOSE, DTPOSE, CTPOSE, TIP,
DTIP, CTIP ..........................................195
Computing Adjoints of Complex Matrices - CMADJ, CTRANS ...197
Matrix Addition - MADD, SMADD, DMADD, CMADD ..............199
Matrix Subtraction - MSUBT, SMSUBT, DMSUBT, CMSUBT .......201
Matrix Multiplication - MTMS, DMTMS, CMTMS, MPROD,
DMPROD, CMPROD ......................................203
Product of a Packed Symmetric Matrix and a Vector -
SVPRD, DSVPRD .......................................205
Transpose Matrix Products - TMPROD .......................207
Symmetric Matrix Products - SMPROD .......................209
Kronecker Product of Matrices - KPROD, DKPROD, CKPROD ....211
|Rank of a Real Matrix - RNK, DRNK ........................213
|Inverting General Real Matrices and Solving General
| Systems of Real Linear Equations - CROUT,KROUT,
| NPIVOT, MSLV, DMSLV, MSLV1, DMSLV1 ............... 215
Solutions of Real Equations with Iterative Improvement -
SLVMP ...............................................221
Solutions of Almost Block Diagonal Systems of Linear
Equations - ARCECO, ARCESL ..........................223
Solution of Almost Block Tridiagonal Systems of Linear
Equations Q BTSLV ...................................225
Inverting Symmetric Real Matrices and Solving Symmetric
Systems of Real Linear Equations - SMSLV, DSMSLV ....227
Inverting Positive Definite Symmetric Matrices and
Solving Positive Definite Symmetric Systems of
Linear Equations - PCHOL,DPCHOL .....................231
Solution of Toeplitz Systems of Linear Equations -
TOPLX, DTOPLX .......................................233
Inverting General Complex Matrices and Solving
General Systems of Complex Linear Equations -
CMSLV, CMSLV1, DCMSLV ...............................235
Solution of Complex Equations with Iterative Improvement -
CSLVMP ..............................................239
Singular Value Decomposition of a Matrix - SSVDC,DSVDC,
CSVDC ...............................................241
Evaluation of the Characteristic Polynomial of a
Matrix - DET, DPDET, CDET ...........................243
Solution of the Matrix Equation AX + XB = C -
ABSLV, DABSLV .......................................245
Solution of the Matrix Equation AtX + XA = C where C is
Symmetric - TASLV, DTASLV ...........................247
Solution of the Matrix Equation - AX2 + BX + C = O -
SQUINT ..............................................249
Exponential of a Real Matrix - MEXP, DMEXP ...............251
Large Dense Systems of Linear Equations
Solving systems of 200-400 Linear Equations -
LE, DPLE, CLE .......................................253
Banded Matrices
Band Matrix Storage ......................................255
|Conversion of Banded Matrices to and from the
| Standard Format - CVBR, CVBD, CVBC, CVRB,
| CVDB, CVCB, CVRB1,CVDB1, CVCB1 ......................257
|Conversion of Banded Matrices to and from Sparse Form -
| MCVBS, DMCVBS, CMCVBS, MCVSB, DMCVSB, CMCVSB ....... 259
|Conversion of Banded Real Matrices to and from
| Double Precision Form - BCVRD, BCVDR ............... 261
|The Real and Imaginary Parts of a Banded
| Complex Matrix - BREAL, BIMAG .................... 263
|Computing A + Bi for Banded Real Matrices A and B - BCVR..265
|Transposing Banded Matrices Q BPOSE, DBPOSE, CBPOSE ......267
|Addition of Banded Matrices - BADD, DBADD, CBADD .........269
|Subtraction of Banded Matrices - BSUBT, DBSUBT, CBSUBT ...271
|Multiplication of Banded Matrices - BPROD,DBPROD,CBPROD ..273
Product of a Real Banded Matrix and Vector -
BVPRD, BVPRD1, BTPRD, BTPRD1 .................. 275
|Product of a Double Precision Banded Matrix and Vector -
DBVPD, DBVPD1, DBTPD, DBTPD1 ........................277
Product of a Complex Banded Matrix and Vector -
CBVPD, CBVPD1, CBTPD, CBTPD1 ..................... 279
|L1 Norm of a Real Banded Matrix - B1NRM, DB1NRM ..........281
|L0 Norm of a Real Banded Matrix - BNRM, DBNRM ............283
Solution of Banded Systems of Real Linear Equations -
BSLV, BSLV1 .........................................285
|Computation of the Condition Number of a Real
| Banded Matrix - B1CND ...............................287
|Double Precision Solution of Banded Systems of
| Real Linear Equations - DBSLV, DBSLV1 ...............289
|Computation of the Condition Number of a
Double Precision Banded Matrix - DB1CND .............291
Solution of Banded Systems of Complex Linear Equations -
CBSLV, CBSLV1 .......................................293
Sparse Matrices
Storage of Sparse Matrices ...............................295
Conversion of Sparse Matrices to and from the Standard
Format - CVRS, CVDS, CVCS, CVSR, CVSD, CVSC .........297
Conversion of Spase Real Matrices to and from
Double Precision Form - SCVRD, SCVDR ................299
The Real and Imaginary Parts of a Sparse Complex Matrix -
CSREAL, CSIMAG ......................................301
Computing A + Bi for Sparse Real Matrices A and B Q
SCVRC ...............................................303
Copying Sparse Matrices - RSCOPY, DSCOPY, CSCOPY ........305
Computing Conjugates of Sparse Complex Matrices - SCONJ ..307
Transposing Sparse Real Matrices - RPSOE, RPOSE1 .........309
Transposing Sparse Double Precision Matrices -
DPOSE, DPOSE1 .......................................311
Transposing Sparse Complex Matrices - CPOSE, CPOSE1 ......313
Addition of Sparse Matrices - SADD, DSADD, CSADD .........315
Subtraction of Sparse Matrices Q SSUBT, DSSUBT, CSSUBT ...317
Multiplication of Sparse Matrices - SPROD,DSPROD,CSPROD ..319
Product of a Real Sparse Matrix and Vector -
MVPRD, MVPRD1, MTPRD, MTPRD1 ........................321
Product of a Double Precision Sparse Matrix and Vector Q
DVPRD, DVPRD1, DTPRD, DTPRD1 ........................323
Product of a Complex Sparse Matrix and Vector -
CVPRD, CVPRD1, CTPRD, CTPRD1 ........................325
|L1 Norm of a Sparse Real Matrix - S1NRM, DS1NRM ..........327
|L0 Norm of a Sparse Real Matrix - SNRM, DSNRM ............329
Ordering the Rows of a Sparse Matrix by
Increasing Length Q SPORD ...........................331
Reordering Sparse Matrix into Block Triangular Form Q
BLKORD ..............................................333
Solution of Sparse Systems of Real Linear Equations -
SPSLV, RSLV, TSLV ...................................335
|Computation of the Condition Number of a Real
| Sparse Matrix - S1CND ...............................339
Double Precision Solution of Sparse Systems of
Real Linear Equation - DSPSLV, DSLV, DTSLV ..........341
|Computation of the Condition Number of a
| Double Precision Sparse Matrix - DS1CND .............345
Solution of Sparse Systems of Complex Linear Equations -
CSPSLV, CSLV, CTSLV .................................347
Eigenvalues and Eigenvectors
Computation of Eigenvalues of General Real Matrices -
EIG, EIG1 ................................... .......351
Computation of Eigenvalues and Eigenvectors of
General Real Matrices - EIGV, EIGV1 .................353
Double Precision Computation of Eigenvalues of
Real Matrices - DEIG ................................355
Double Precision Computation of Eigenvalues and
Eigenvectors of Real Matrices - DEIGV ...............357
Computation of Eigenvalues of Symmetric Real Matrices -
SEIG, SEIG1 .........................................359
Computation of Eigenvalues and Eigenvectors of
Symmetric Real Matrices - SEIGV, SEIGV1 .............361
|Double Precision Computation of Eigenvalues of
| Symmetric Real Matrices - DSEIG .....................363
|Double Precision Computation of Eigenvalues and
| Eigenvectors of Symmetric Real Matrices - DSEIGV ....365
Computation of Eigenvalues of Complex Matrices - CEIG ....367
Computation of Eigenvalues and Eigenvectors of
Complex Matrices - CEIGV ............................369
Double Precision Computation of Eigenvalues of
Complex Matrices - DCEIG ............................371
Double Precision Computation of Eigenvalues and
Eigenvectors of Complex Matrices - DCEIGV ...........373
L1 Solution of Linear Equations
L1 Solution of Systems of Linear Equations with Equality
and Inequality Constraints - CL1 ....................375
Least Squares Solution of Linear Equations
|Least Squares Solution of Systems of Linear Equations -
| LLSQ, LSQR, HFTI, HFTI2 .......................... 377
Least Squares Solution of Overdetermined Systems of Linear
Equations with Iterative Improvement - LLSQMP .......383
|Double Precision Least Squares Solution of Systems of
| Linear Equations - DLLSQ, DLSQR, DHFTI, DHFTI2 .....385
Least Squares Solution of Systems of Linear Equations with
Equality and Inequality Constraints - LSEI ..........391
Least Squares Solution of Systems of Linear Equations with
Equality and Nonnegativity Constraints - WNNLS ......395
Least Squares Iterative Improvement Solution of Systems of
Linear Equations with Equality Constraints - L2SLV ..399
Iterative Least Squares Solution of Banded Linear
Equations - BLSQ ...................................403
Iterative Least Squares Solution of Sparse Linear
Equations - SPLSQ, STLSQ ...........................405
Optimization
Minimization of Functions of a Single Variable - FMIN ....407
Minimization of Functions of n Variable - OPTF ...........409
Unconstrained Minimum of the Sum of Squares of Nonlinear
Functions Q LMDIFF ..................................411
Linear Programming - SMPLX, SSPLX ........................413
The Assignment Problem - ASSGN ...........................417
0-1 Knapsack Problem MKP .................................419
Transforms
Inversion of the Laplace Transform - LAINV ...............421
Fast Fourier Transform - FFT, FFTl .......................425
Multivariate Fast Fourier Transform - MFFT, MFFTl ........427
Discrete Cosine and Sine Transforms - COSQI, COSQB,
COSQF, SINQB, SINQF .................................429
Approximation of Functions
Rational Minimax Approximation of Functions Q CHEBY ......433
Lp Approximation of Functions Q ADAPT ....................435
Calculation of the Taylor Series of Complex
Analytic Function - CPSC, DCPSC .....................439
Curve Fitting
Linear Interpolation - TRP ...............................443
Lagrange Interpolation Q LTRP ............................445
Hermite Interpolation - HTRP .............................447
Conversion of Real Polynomials from Newton to Taylor
Series Form - PCOEFF ................................449
Least Squares Polynomial Fit - PFIT ......................451
Weighted Least Squares Polynomial Fit - WPFIT.............453
Cubic Spline Interpolation - CBSPL, SPLIFT ...............455
Weighted Least Squares Cubic Spline Fit - SPFIT ..........457
|Least Squares Cubic Spline Fitting with Equality and
| Inequality Constraints - CSPFIT .....................459
Cubic Spline Evaluation - SCOMP, SCOMP1, SCOMP2 ..........461
Cubic Spline Evaluation and Differentiation -
SEVAL, SEVAL1, SEVAL2 ..............................463
Integrals of Cubic Spline - CSINT, CSINT1, CSINT2 ........465
|Periodic Cubic Spline Interpolation - PDSPL ..............467
|Least Squares Periodic Cubic Spline Fitting - PDFIT ......469
|Periodic Cubic Spline Evaluation and Differentiation -
| PSCMP, PSEVL ........................................471
N-Dimensional Cubic Spline Closed Curve Fitting -
CSLOOP, LOPCMP, LOPDF ..............................473
Spline under Tension Interpolation - CURV1 ...............475
Spline under Tension Evaluation - CURV2 ..................477
Differentiation and Integrals of Splines under Tension Q
CURVD, CURVI .......................................479
Two Dimensional Spline under Tension Curve Fitting -
KURV1, KURV2 .......................................481
Two Dimensional Spline under Tension Closed Curve
fitting - KURVP1,KURVP2 ............................483
Three Dimensional Spline under Tension Curve Fitting -
QURV1, QURV2 .......................................485
|B-Splines ................................................487
|Finding the Interval that Contains a Point - INTRVL ......489
|Evaluation and Differentiation of Piecewise Polynomial
| from its B-Spline Representation - BVAL .............491
|Evaluation of the Indefinite Integral of a Piecewise
| Polynomial from its B-spline representation - BVALI..493
Conversion of Piecewise Polynomials from B-Spline to
Taylor Series Form - BSPP ..........................495
Evaluation of Piecewise Polynomials from their Taylor
Series Representation - PPVAL .......................497
Piecewise Polynomial Interpolation - BSTRP ...............499
|Weighted Least Squares Piecewise Polynomial Fitting -
| BSLSQ ...............................................501
|Least Squares Piecewise Polynomial Fitting with
| Equality and Inequality Constraints - BFIT ..........503
Surface Fitting over Rectangular Grids
|Bicubic Splines and Bisplines under Tension ..............505
|Weighted Least Squares Bicubic Spline Fitting - SPFIT2 ...507
|Evaluation and Differentiation of Bicubic Splines -
| CSURF, CSURF1, CSRF, CSRF2 ..........................509
Bispline under Tension Surface Interpolation - SURF ......513
Bispline under Tension Evaluation - SURF2, NSURF2 ........515
|Bivariate B-Spline Piecewise Polynomial Interpolation -
| BSTRP2 ..............................................517
|Bivariate B-Spline Piecewise Polynomial Least Squares
| Fitting - BSLSQ2 ....................................519
|Evaluation and Differentiation of Bivariate Piecewise
| Polynomials from their B-Spline Representation -
| BVAL2................................................521
Surface Fitting over Arbitrarily Positioned Data Points
|Surface Interpolation for Arbitrarily Positioned
| Data Points - TRMESH, GRADG, GRADL, SFVAL, SFVAL2 ...523
Manifold Fitting
Weighted Least Squares Fitting with Polynomials of n
Variables - MFIT, DMFIT, MEVAL, DMEVAL .............527
Numerical Integration
|Evaluation of Integrals over Finite Intervals -
| QAGS, QXGS, QSUBA, DQAGS, DQXGS .....................531
Evaluation of Integrals over Infinite Intervals -
QAGI, DQAGI .........................................539
Evaluation of Double Integrals over Triangles Q CUBTRI ...543
Integral Equations
Solution of Fredholm Integral Equations of the Second
Kind - IESLV .......................................545
Ordinary Differential Equations/Initial Value Problems
|The Initial Value Solvers - Introductory Comments ........549
Adaptive Adams Solution of Nonstiff Differential
Equations - ODE .....................................551
|Adaptive Block RKF Solution of Nonstiff Differential
Equations - BRKF45 ..................................555
Adaptive RFK Solution of Nonstiff Differential
Equations - RFK45 ..................................559
Adaptive RFK Solution of Nonstiff Differebtial Equations
with Global Error Estimation - GERK .................563
Adaptive Solution of Stiff Differential Equations -
SFODE, SFODE1 .......................................567
Fourth-Order Runge-Kutta - RK ............................571
Eighth-Order Runge-Kutta - RK8 ...........................573
Partial Differential Equations
Separable Second-Order Elliptic Equations on Rectangular
Domains - SEPDE ...................................575
Discrete Random Number Generation
|Uniform Random Selection of Values from a Finite Set of
| Integers - URGET ....................................579
Continuous Random Number Generation
|Uniform Random Number Generator - URNG, DURNG.............581
|Generating Points Uniformly in a Square - URNG2, DURNG2 ..583
|Generating Points Uniformly in a Circle - RCIR, DRCIR ....585
|Normal Random Number Generator - RNOR, DRNOR,
| NRNG, DNRNG .........................................587
|Multivariate Normal Random Vector Generator -
| NRVG, DNRVG, NRVG1, DNRVG1 ..........................589
|Exponential Random Number Generator - RANEXP, DRNEXP .....593
|Gamma Random Number Generator and the Chi-Square
| Distribution - RGAM, DRGAM ..........................595
|Beta Random Number Generator - RBETA, DRBETA .............597
|F-Distribution Random Number Generator - FRAN, DFRAN .....599
|Student t-Distribution Random Number Generator -
| TRAN, DTRAN .........................................601
|First Order Markov Random Number Generator - RMK1,DRMK1 ..603
Special Functions Mathematical Library
GNU MP (C# Wrapper) <(--- arbitrary precisiion library, LGPL
If you like my plugins please consider to support the program buying a license; for personal contributions to me: paypal.me/dcprojects
1 пользователям понравился этот пост
ioan92 22.06.2014 14:32:00
#6 Опубликовано: 22.06.2014 13:11:15
Generating complex math visualizations in SVG using C# and ILNumerics
2D and 3D Visualization API
ilnumerics/ILView (github )
I'm not sure, but it may be possible to attach it to the program.
[YOUTUBE]http://www.youtube.com/watch?v=RTfLAdVWReI[/YOUTUBE]
2D and 3D Visualization API
ilnumerics/ILView (github )
I'm not sure, but it may be possible to attach it to the program.
[YOUTUBE]http://www.youtube.com/watch?v=RTfLAdVWReI[/YOUTUBE]
Russia ☭ forever, Viacheslav N. Mezentsev
1 пользователям понравился этот пост
Martin Kraska 22.06.2014 16:51:00
#7 Опубликовано: 22.06.2014 16:51:04
ILview looks promising. Whatever can be done, the challenge will be in a comfortable user interface with appropriate defaults and automatic features.
Martin Kraska
Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
#8 Опубликовано: 24.06.2014 07:55:52
this is a good looking framework for machine learning algorithms with a graphic user interface.
http://www.heatonresearch.com/encog
http://www.heatonresearch.com/encog
1 пользователям понравился этот пост
Radovan Omorjan 24.06.2014 10:16:00
#9 Опубликовано: 09.03.2017 06:55:52
1 пользователям понравился этот пост
Davide Carpi 09.03.2017 11:30:00
#10 Опубликовано: 21.07.2017 06:27:43
Hi!
Saving page (contains user definied functions and variables) as compiled .dll plugin file or zipped VS project would be awsome.
Saving page (contains user definied functions and variables) as compiled .dll plugin file or zipped VS project would be awsome.

#11 Опубликовано: 01.08.2018 09:31:31
Some solvers:
- SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (source);
- Lsoda (tests, source).
ark_examples.pdf (1 МиБ) скачан 81 раз(а).
- SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (source);
- Lsoda (tests, source).
ark_examples.pdf (1 МиБ) скачан 81 раз(а).
Russia ☭ forever, Viacheslav N. Mezentsev
1 пользователям понравился этот пост
Fridel Selitsky 01.08.2018 10:30:00
#12 Опубликовано: 08.08.2018 05:32:54
It would be great to get these books and sources:
I have only the last one.
- Practical Cross-Platform Charts and Graphics with ASP.NET Core MVC: Code Examples
- Practical C# and WPF for Financial Markets: Code Examples
- Practical Quantitative Finance with R: Code Examples
- Practical .NET Chart Development and Applications: Code Examples
- Practical WPF Charts and Graphics: Code Examples
- Practical Numerical Methods with C#: Code Examples
- Practical Silverlight Programming: Code Examples
- Practical WPF Graphics Programming: Code Examples
- Practical C# Charts and Graphics: Code Examples
I have only the last one.
Russia ☭ forever, Viacheslav N. Mezentsev
#13 Опубликовано: 10.08.2018 07:30:39
Hi Uni. Just only one book's examples code:
https://github.com/Apress/practical-wpf-charts-graphics
Best regards.
Alvaro.
https://github.com/Apress/practical-wpf-charts-graphics
Best regards.
Alvaro.
2 пользователям понравился этот пост
#14 Опубликовано: 20.09.2018 05:31:49
Russia ☭ forever, Viacheslav N. Mezentsev
2 пользователям понравился этот пост
#15 Опубликовано: 01.12.2018 15:03:17
Hi. This libraries are from the "coolprop family":
- Fluids: https://fluids.readthedocs.io/index.html
- Thermo: https://thermo.readthedocs.io/en/latest/index.html
Best regards.
Alvaro.
- Fluids: https://fluids.readthedocs.io/index.html
- Thermo: https://thermo.readthedocs.io/en/latest/index.html
Best regards.
Alvaro.
#16 Опубликовано: 19.01.2019 07:53:10
Russia ☭ forever, Viacheslav N. Mezentsev
3 пользователям понравился этот пост
NDTM Amarasekera 19.01.2019 12:00:00, Radovan Omorjan 19.01.2019 08:18:00, frapuano 19.01.2019 09:30:00
#17 Опубликовано: 01.02.2019 07:26:01
Russia ☭ forever, Viacheslav N. Mezentsev
1 пользователям понравился этот пост
Radovan Omorjan 01.02.2019 08:56:00
#18 Опубликовано: 01.02.2019 09:09:14
Wrote1. cscobyla
2. CSNumerics
Here is the test suite for different optimization problems among other things (solved in Mathcad)
Regards,
Radovan
When Sisyphus climbed to the top of a hill, they said: "Wrong boulder!"
1 пользователям понравился этот пост
Вячеслав Мезенцев 01.02.2019 09:39:00
#19 Опубликовано: 04.02.2019 07:13:08
#20 Опубликовано: 04.02.2019 08:21:58
WroteIf we find a free editor of electronic circuits, then we can use this simulator: Spice#.
1. Tutorial.
Hi Uni. I prefer Qucks ( http://qucs.sourceforge.net/ ), another simulator.
But instead of make a plugin for doing that maths, I guess that SMath is enough powerful for have it's own library for solve spice netlists.
In the attached, a very rude mna solver (Modified Nodal Analysis. Can see, for example: http://qucs.sourceforge.net/tech/node14.html or https://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA6.html ) and a very primitive Ladder function for chart circuits defined in a similar way like spice files. Also, some attempts for make bode, zp and other charts. I don't know if this could be an one man task, and figure that it could be better to have some place where develop shared libraries in native smath files in a collaborative way.
MNA Solver.sm (332 КиБ) скачан 56 раз(а).
Best regards.
Alvaro.
2 пользователям понравился этот пост
-
Новые сообщения
-
Нет новых сообщений