Definition of alg()

Definition of alg() - Сообщения

#1 Опубликовано: 27.05.2010 06:10:21
dg1727

dg1727

0 сообщений из 18 понравились пользователям.

Группа: User

Hello,

Could someone please point me to a definition of the alg() function?

In SMath Studio version 0.88, the description is "Algebraic addition to matrix."

In a Web search, the closest I found to a definition was a Wikipedia page on matrix addition, but I didn't find an operation which takes a matrix and 2 scalars as inputs and returns a scalar as output, as alg() does.

Thanks in advance for explaining.
#2 Опубликовано: 27.05.2010 08:55:57
Andrey Ivashov

Andrey Ivashov

2269 сообщений из 3730 понравились пользователям.

Группа: Super Administrator

It's a Cofactor.

Regards.
#3 Опубликовано: 27.05.2010 09:32:11
Oscar Campo

Oscar Campo

124 сообщений из 298 понравились пользователям.

Группа: Moderator

Hi,
The alg() returns the cofactor of a matrix, wich is defined as [MATH]el(A;i;j)=(-1)^(i+j)*el(M;i;j)[/MATH], where [MATH]el(M;i;j)[/MATH] is the minor of a matrix.

In the help for alg() function you can see:
[MATH]alg(mat(1;2;3;4;5;6;7;8;9;3;3);1;2)=6[/MATH]

For matrix [MATH]A←mat(1;2;3;4;5;6;7;8;9;3;3)[/MATH], The minor [MATH]el(M;1;2)[/MATH] of A is:
[MATH]el(M;1;2)←det(mat(#;#;#;4;#;6;7;#;9;3;3))[/MATH]
[MATH]el(M;1;2)←det(mat(4;6;7;9;2;2))[/MATH]

so, [MATH]el(A;1;2)[/MATH] is the cofactor of A, calculated as:
[MATH]el(A;1;2)-1)^(1+2)*(4*9-7*6)=6[/MATH].

Regards,

Oscar Campo
  • Новые сообщения Новые сообщения
  • Нет новых сообщений Нет новых сообщений