Loop counting taylor series

Loop counting taylor series - Сообщения

#1 Опубликовано: 13.05.2014 15:45:29
cube

cube

0 сообщений из 11 понравились пользователям.

Группа: User

Hello

My teacher give me a homework, about make a taylor series. Second task is to make something to calculate proper lenght of taylor series.

For example if my function is e(t) how long taylor sieries will be to be equal to this function.

Sorry for my english

I have a idea to make a loop, like 1+1+1+1...1+n until we recive solution, but I dont know how to do that

#2 Опубликовано: 14.05.2014 12:29:50
Davide Carpi

Davide Carpi

1415 сообщений из 2872 понравились пользователям.

Группа: Moderator

Hello cube, what's exactly the point?

To build a loop use a for or a while statement (something like in the attachment).


2014-05-14 18_10_39-SMath Studio Desktop - [loops.sm].png
If you like my plugins please consider to support the program buying a license; for personal contributions to me: paypal.me/dcprojects
1 пользователям понравился этот пост
cube 21.05.2014 04:34:00
#3 Опубликовано: 21.05.2014 04:17:33
cube

cube

0 сообщений из 11 понравились пользователям.

Группа: User

Ok guys thanks for such quick response I am surprised and pleased, I found support, it`s means a lot for me. But that is not what I'm looking for

I ll try to explain what im looking for.

Lets say we got a;b;

and we wanna define "c" - what we are looking for b=a if b
after that, once again we check b, then if b=a we recive a solution



So for the Taylor series Im looking for something similar.

for example x=4 then we look on diagram and see its not equal.

So I put x=5 ok its closser but still its not that what we are looking for.

Putting x=8 yes it fit is close to function between (0;2)

#4 Опубликовано: 21.05.2014 07:46:21
Radovan Omorjan

Radovan Omorjan

325 сообщений из 2052 понравились пользователям.

Группа: Moderator

Hello,

Open Help->Examples and choose "Expansion of function to Maclaurin series", than open it. You can then choose the function as well as the highest power of x.

Regards,
Radovan
MaclaurinSeries.png
When Sisyphus climbed to the top of a hill, they said: "Wrong boulder!"
1 пользователям понравился этот пост
ioan92 21.05.2014 09:38:00
#5 Опубликовано: 21.05.2014 17:53:45
Martin Kraska

Martin Kraska

1222 сообщений из 2150 понравились пользователям.

Группа: Moderator

Here is an example which uses the Taylor function of the Nonlinear Solvers plugin and animates approximations of inreasing order.
taylor.PNG
Martin Kraska Pre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
  • Новые сообщения Новые сообщения
  • Нет новых сообщений Нет новых сообщений