1 страниц (3 вхождений)
inv(matrix) * matrix does not give unity matrix? - A times inv(A) does not give unity matrix - Сообщения
325 сообщений из 2 052 понравились и 1 не понравились пользователям.
Группа: Moderator
Radovan, guess what the answer is...
Because A is defined symbolically.
Each use of A calls the definition and produces new random numbers.
It does not help to switch optimization to numeric, because that first generates the random number and then adds it to the zero matrix. Thus A becomes singular (all identical numbers.)
One might wish to define more precisely, what adding a random number to a matrix should give. First picking the number and adding it or first adding the call to all elements and then picking the numbers.

Because A is defined symbolically.
Each use of A calls the definition and produces new random numbers.
It does not help to switch optimization to numeric, because that first generates the random number and then adds it to the zero matrix. Thus A becomes singular (all identical numbers.)
One might wish to define more precisely, what adding a random number to a matrix should give. First picking the number and adding it or first adding the call to all elements and then picking the numbers.
Martin KraskaPre-configured portable distribution of SMath Studio: https://en.smath.info/wiki/SMath%20with%20Plugins.ashx
325 сообщений из 2 052 понравились и 1 не понравились пользователям.
Группа: Moderator
I think you agree with me that this simple example reveals (again) the peculiarities of symbolic-numeric SMath problem
Regards,
Radovan
Regards,
Radovan
When Sisyphus climbed to the top of a hill, they said: "Wrong boulder!"
1 страниц (3 вхождений)
- Новые сообщения
- Нет новых сообщений