Davide CarpiSMath项目的作用域中创建。由Davide Carpi发布。
这是一个开源项目。MIT许可证下共享的源代码SVN存储库

Features of Set Operations

版本0.4.8992.40087

Functions

Additional components that add new mathematical functions to the SMath Studio program, necessary for solving problems from various fields.

  1. set_Cardinality("matrix")
    Returns the number of unique elements in "matrix".
  2. set_CartesianProduct(...)
    Cartesian product of "1:set", "2:set", ..., "n:set".
  3. set_Choose("matrix")
    Returns all combinations of the elements contained in the set "matrix". Duplicate elements are taken into account.
  4. set_Choose("1:matrix", "2:number")
    Returns all combinations of size "2:number" of the elements contained in the set "1:matrix". Duplicate elements are taken into account.
  5. set_Complement("matrix")
    Returns the set of elements in "set_Universe" not in "matrix".
  6. set_Contains("1:matrix", "2:variable")
    Returns 1 if "1:matrix" contains "2:variable", 0 otherwise.
  7. set_Difference(...)
    Returns a set of elements that are in "1:set" but not in "2:set", ...,"n:set".
  8. set_DoesNotContain("1:matrix", "2:variable")
    Returns 1 if "1:matrix" does not contain "2:variable", 0 otherwise.
  9. set_DoesNotExist("1:matrix", "2:function")
    Non existential quantifier. Returns 1 if for all elements of "1:matrix" the predicate "2:function" is always false, 0 otherwise.
  10. set_ElementOf("1:variable", "2:matrix")
    Returns 1 if "1:variable" is an element of "2:matrix", 0 otherwise.
  11. set_Exists("1:matrix", "2:function")
    Existential quantifier. Returns 1 if for at least one element of "1:matrix" the predicate "2:function" is true, 0 otherwise.
  12. set_Exists1("1:matrix", "2:function")
    Unique existential quantifier. Returns 1 if for one and only one element of "1:matrix" the predicate "2:function" is true, 0 otherwise.
  13. set_ForAll("1:matrix", "2:function")
    Universal quantifier. Returns 1 if for all elements of "1:matrix" the predicate "2:function" is always true, 0 otherwise.
  14. set_Intersection(...)
    Returns a set of elements that are in all sets "1:set", "2:set", ..., "n:set".
  15. set_NotElementOf("1:variable", "2:matrix")
    Returns 1 if "1:variable" is an element of "2:matrix", 0 otherwise.
  16. set_NotSubset("1:matrix", "2:matrix")
    Returns 1 if "1:matrix" is not a subset of "2:matrix", 0 otherwise.
  17. set_NotSuperset("1:matrix", "2:matrix")
    Returns 1 if "1:matrix" is not a superset of "2:matrix", 0 otherwise.
  18. set_Permute("matrix")
    Returns all permutations from the elements contained in the set "matrix". Duplicate elements are taken into account.
  19. set_Permute("1:matrix", "2:number")
    Returns all permutations from the elements contained in the set "1:matrix" taken "2:number" at a time. Duplicate elements are taken into account.
  20. set_PowerSet("matrix")
    Returns the set of all subsets of "matrix".
  21. set_ProperSubset("1:matrix", "2:matrix")
    Returns 1 if "1:matrix" is a proper subset of "2:matrix", 0 otherwise.
  22. set_ProperSuperset("1:matrix", "2:matrix")
    Returns 1 if "1:matrix" is a proper superset of "2:matrix", 0 otherwise.
  23. set_SetBuilder(...)
    Definition of a set by predicate.
  24. set_Shuffle("matrix")
    Shuffle the elements of a set "matrix". Duplicate elements are kept.
  25. set_Shuffle("1:matrix", "2:number")
    Shuffle the elements of a set "1:matrix" using a seed "2:number". Duplicate elements are kept.
  26. set_Sort("matrix")
    Sort elements of a set "matrix" in natural order. Duplicate elements are kept.
  27. set_Subset("1:matrix", "2:matrix")
    Returns 1 if "1:matrix" is a subset of "2:matrix", 0 otherwise.
  28. set_Superset("1:matrix", "2:matrix")
    Returns 1 if "1:matrix" is a superset of "2:matrix", 0 otherwise.
  29. set_SymmetricDifference(...)
    Returns a set of elements that belongs to any one of "1:set", "2:set", ...,"n:set", but are not present in multiple sets.
  30. set_Union(...)
    Returns a set of elements that are in "1:set" or "2:set" ... or "n:set" sets.
  31. set_Unique("matrix")
    Remove duplicate elements from a set "matrix"; output elements are sorted in natural order.