Version 0.4.8992.40087
Functions
Additional components that add new mathematical functions to the SMath Studio program, necessary for solving problems from various fields.
-
set_Cardinality("matrix")
Returns the number of unique elements in "matrix". -
set_CartesianProduct(...)
Cartesian product of "1:set", "2:set", ..., "n:set". -
set_Choose("matrix")
Returns all combinations of the elements contained in the set "matrix". Duplicate elements are taken into account. -
set_Choose("1:matrix", "2:number")
Returns all combinations of size "2:number" of the elements contained in the set "1:matrix". Duplicate elements are taken into account. -
set_Complement("matrix")
Returns the set of elements in "set_Universe" not in "matrix". -
set_Contains("1:matrix", "2:variable")
Returns 1 if "1:matrix" contains "2:variable", 0 otherwise. -
set_Difference(...)
Returns a set of elements that are in "1:set" but not in "2:set", ...,"n:set". -
set_DoesNotContain("1:matrix", "2:variable")
Returns 1 if "1:matrix" does not contain "2:variable", 0 otherwise. -
set_DoesNotExist("1:matrix", "2:function")
Non existential quantifier. Returns 1 if for all elements of "1:matrix" the predicate "2:function" is always false, 0 otherwise. -
set_ElementOf("1:variable", "2:matrix")
Returns 1 if "1:variable" is an element of "2:matrix", 0 otherwise. -
set_Exists("1:matrix", "2:function")
Existential quantifier. Returns 1 if for at least one element of "1:matrix" the predicate "2:function" is true, 0 otherwise. -
set_Exists1("1:matrix", "2:function")
Unique existential quantifier. Returns 1 if for one and only one element of "1:matrix" the predicate "2:function" is true, 0 otherwise. -
set_ForAll("1:matrix", "2:function")
Universal quantifier. Returns 1 if for all elements of "1:matrix" the predicate "2:function" is always true, 0 otherwise. -
set_Intersection(...)
Returns a set of elements that are in all sets "1:set", "2:set", ..., "n:set". -
set_NotElementOf("1:variable", "2:matrix")
Returns 1 if "1:variable" is an element of "2:matrix", 0 otherwise. -
set_NotSubset("1:matrix", "2:matrix")
Returns 1 if "1:matrix" is not a subset of "2:matrix", 0 otherwise. -
set_NotSuperset("1:matrix", "2:matrix")
Returns 1 if "1:matrix" is not a superset of "2:matrix", 0 otherwise. -
set_Permute("matrix")
Returns all permutations from the elements contained in the set "matrix". Duplicate elements are taken into account. -
set_Permute("1:matrix", "2:number")
Returns all permutations from the elements contained in the set "1:matrix" taken "2:number" at a time. Duplicate elements are taken into account. -
set_PowerSet("matrix")
Returns the set of all subsets of "matrix". -
set_ProperSubset("1:matrix", "2:matrix")
Returns 1 if "1:matrix" is a proper subset of "2:matrix", 0 otherwise. -
set_ProperSuperset("1:matrix", "2:matrix")
Returns 1 if "1:matrix" is a proper superset of "2:matrix", 0 otherwise. -
set_SetBuilder(...)
Definition of a set by predicate. -
set_Shuffle("matrix")
Shuffle the elements of a set "matrix". Duplicate elements are kept. -
set_Shuffle("1:matrix", "2:number")
Shuffle the elements of a set "1:matrix" using a seed "2:number". Duplicate elements are kept. -
set_Sort("matrix")
Sort elements of a set "matrix" in natural order. Duplicate elements are kept. -
set_Subset("1:matrix", "2:matrix")
Returns 1 if "1:matrix" is a subset of "2:matrix", 0 otherwise. -
set_Superset("1:matrix", "2:matrix")
Returns 1 if "1:matrix" is a superset of "2:matrix", 0 otherwise. -
set_SymmetricDifference(...)
Returns a set of elements that belongs to any one of "1:set", "2:set", ...,"n:set", but are not present in multiple sets. -
set_Union(...)
Returns a set of elements that are in "1:set" or "2:set" ... or "n:set" sets. -
set_Unique("matrix")
Remove duplicate elements from a set "matrix"; output elements are sorted in natural order.